Sunday, March 22 *All Sunday sessions are included with conference registration*

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1: RF/mmW Power Amplifiers</th>
<th>Session 2: Phase-Locked Loops</th>
<th>Session 3: Transceivers (5G /IoT)</th>
<th>Session 4: Data Converters and Interface Circuits</th>
<th>MathWorks Sessions (9:00 am-10:30 am)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am-4:45 pm</td>
<td>Educational Session 1</td>
<td>Educational Session 2</td>
<td>Educational Session 3</td>
<td>Educational Session 4</td>
<td></td>
</tr>
</tbody>
</table>

Monday, March 23

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 am-8:50 am</td>
<td></td>
</tr>
<tr>
<td>8:50 am-9:40 am</td>
<td></td>
</tr>
<tr>
<td>9:40 am-10:00 am</td>
<td></td>
</tr>
<tr>
<td>10:00 am-12:00 pm</td>
<td></td>
</tr>
<tr>
<td>12:00 pm-2:00 pm</td>
<td></td>
</tr>
<tr>
<td>2:00 pm-3:45 pm</td>
<td></td>
</tr>
<tr>
<td>4:00 pm-5:15 pm</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday, March 24

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am-8:50 am</td>
<td></td>
</tr>
<tr>
<td>8:50 am-9:00 am</td>
<td></td>
</tr>
<tr>
<td>9:00 am-11:35 am</td>
<td></td>
</tr>
<tr>
<td>11:35 am-1:30 pm</td>
<td></td>
</tr>
<tr>
<td>1:30 pm-3:15 pm</td>
<td></td>
</tr>
<tr>
<td>3:30 pm-5:40 pm</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday, March 25

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 am-12:05 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:05 pm-2:00 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 pm-2:15 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closing and Awards Ceremony
2020 IEEE Custom Integrated Conference is going virtual!

The IEEE Custom Integrated Circuits Conference is a premier conference devoted to IC development. The conference program is a blend of oral presentations, exhibits and forums. The conference sessions present original first published technical work and innovative circuit techniques that tackle practical problems. CICC is the conference to find out how to solve design problems, improve circuit design techniques, get exposure to new technology areas, and network with peers, authors and industry experts.

There are 3 days of Technical Sessions that include lecture presentations addressing state of the art developments in integrated circuit design. The Educational Sessions are a full day of tutorials instructed by recognized invited speakers. The Forums are presented throughout the conference to enrich the learning experience of the attendees. The Forums are presented by leaders from the IC industry. CICC includes an Exhibits Hall that is open in the evenings where Semiconductor manufacturers, software tool suppliers, silicon IP providers, design-service houses, and technical book publishers offer displays and demonstrations of their products. CICC is sponsored by the IEEE Solid-State Circuits Society and technically co-sponsored by the IEEE Electron Devices Society.

Visit our website at www.ieee-cicc.org

IEEE CICC is sponsored by:

Steering Committee

General Chair
Hua Wang, Georgia Institute of Technology

Conference Chair
Fa Foster Dai, Auburn University

Technical Program Chairs
Christophe Antoine, Analog Devices
Samuel Palermo, Texas A&M

Solid State Circuits Society Representative
Hua Wang, Georgia Institute of Technology

Treasurer
Kimo Tam, Analog Devices

Past Chairman and Strategic Development Chair
Alessandro Piovaccari, Silicon Laboratories
Don Thelen, ON Semiconductors

Conference Coordination
John Teehan, CMP, IEEE MCE
Danielle Corrigan, IEEE MCE
Organizing Committee

Special Sessions
Shahriar Mirabbasi, University of British Columbia

Best Papers and Awards
Colin McAndrew, Freescale Semiconductor

Sponsorship and Exhibits
Stefano Pietri, NXP Semiconductors

Outreach
Mohammad Hekmat, Samsung

Mentorship
Julian Tham, Cypress Semiconductors

Technical Program Committees

Analog Circuits and Techniques
Chair, Sudhakar Pamarti, UCLA
Co-chair, Nagendra Krishnapura, IIT Madras
Ping Gui, Southern Methodist University (SMU)
Antonio Liscidini, University of Toronto
Mark Oude Alink, University of Twente
Hiroki Ishikuro, Keio University
Ivan O’Connell, University College Cork
Ion Tesu, Silicon Laboratories
Jiangfeng Wu Tongji, University Shanghai China
Stefano Pietri, NXP Semiconductors
Tolga Dinc, TI

Data Converters
Chair, Nima Maghari, University of Florida
Co-Chair, Mike Chen, University of Southern California
Nan Sun, The University of Texas at Austin
Jun Cao, Broadcom
Delong Cui, Broadcom
Yunzhi Dong, Analog Devices
Seung-Tak Ryu, KAIST
John Khoury, Silicon Laboratories
Ayman Shabra, MediaTek
Gil Engel, Analog Devices
Baradwaj Vgraham, Maxlinear
Lukas Kull, IBM
Filip Tavernier, KU Leuven
Hung-Chu Vanessa Chen, Carnegie Mellon University

Design Foundations
Chair, Paolo Millozzi, Maxlinear
Co-Chair, Charles Augustine, Intel Circuit Research Lab
Colin McAndrew, Freescale Semiconductor
Jaydeep P Kulkarni, The University of Texas at Austin
Farhana Sheikh, Intel Circuit Research Lab
Mitsuhiko Igarashi, Renesas Electronics Corporation
Swaroop Ghosh, Penn State University
Shinya Kajiyama, Hitachi Xuan
Digital Circuits, SoCs, and Systems
Chair, Arijit Raychowdhury, Georgia Institute of Technology
Co-Chair, Carlos Tokunaga, Intel Corporation
Elkim Roa, Universidad Industrial de Santander
Shreyas Sen, Purdue University
Zhengya Zhang, University of Michigan
Gregory Chen, Intel Corporation
Rajiv Joshi, IBM T. J. Watson Research Center
Saad Bin, Qualcomm
Brian Zimmer, Nvidia

Emerging Technologies, Systems and Applications
Chair, Jerald Yoo, National University of Singapore
Co-Chair, Kaushik Sengupta, Princeton
Firooz Aflatouni, University of Pennsylvania
Mahsa Shoaran, Cornell University
Steven Bowers, University of Virginia
Drew Hall, University of California San Diego
Marco Tartagni, University of Bologna
Abhishek Bandyopadhyay, Analog Devices
Kiichi Nitsu, Nagoya University
Ulkuhan Guler, Worcester Polytechnic Institute

Power Management
Chair, Hanh-Phuc, University of California San Diego
Co-Chair, Dina El-Damak USC
Mehdi Kiani, Penn State University
Yan Lu, University of Macau
Mike Mulligan, Silicon Laboratories
Patrick Mercier, University of California San Diego
Tufan Karalar, Istanbul TU
John Pigott, NXP Semiconductors
Chunlei Shi, Qualcomm
Eric Soenen, TSMC
Jason Stauth, Dartmouth College
Saurav Bandyopadhyay, Texas Instruments

Wireless Transceivers and RF/mm-Wave Circuits and Systems
Chair, Yanjie Wang, South China University of Technology
Co-Chair, Woogeun Rhee, Tsinghua University
Debopriyo Chowdhury, Broadcom
Amr Fahim, Inphi Corporation
Wanghua Wu, Samsung
Jane Gu, University of California, Davis
John Long, University of Waterloo
Hossein Lavasani, Qualcomm
Yahya Tousi, University of Minnesota
Aritra Banerjee, IMEC
Payam Heydari, University of California Irvine
Jacques "Chris" Rudell, University of Washington
Swaminathan Sankaran, Texas Instruments
Wireline and Optical Communications Circuits and Systems
Chair, Tod Dickson, IBM T.J. Watson
Co-Chair, Mayank Raj, Xilinx
Xiang Gao, Credo Semiconductor
Tzu-Chien Hsueh, University of California, San Diego
Mozhgan Mansuri, Intel
Mohammad Hekmat, Samsung
Tejasvi Anand, Oregon State University
Shahriar Mirabbasi, University of British Columbia
Sudip Shekhar, University of British Columbia
K. R. Kumar Lakshmikumar, Cisco Systems
Educational Session 1: RF/mmW Power Amplifiers

Session Chair: Debo Chowdhury, Broadcom

09:00 AM

ES1-1
High Efficiency mm-Wave Power Amplifiers in CMOS-SOI and SiGe for 5G
Peter Asbeck, UCSD

5G NR waveforms pose significant challenges for power amplifiers, as a result of their high peak-to-average power ratios, high bandwidths and requirements for low EVM without the use of digital predistortion. CMOS-SOI and SiGe HBT technologies can attain the output power levels needed for most 5G mm-wave applications (Psat to above 23dBm). This talk will review device considerations impacting power and efficiency of mm-wave PAs, and presents 5G amplifier designs using Doherty, outphasing and hybrid designs to increase efficiency to above 25% at 6dB backoff. Design techniques for integration of PA, LNA and switches for mm-wave front-ends are also discussed.

10:30 AM

Break

10:45 AM

ES1-2
High Power Generation for mm-Wave 5G Power Amplifiers in Deep Submicron Planar and FinFET Bulk CMOS
Saeid Daneshgar, Intel

The required output power of power amplifiers (PAs) in 5G mm-Wave wireless transmitters is estimated to vary in the range of 18 to 24dBm across handset, access point, base station, and backhaul applications. A common perception within the industry is that at such power levels, low-cost bulk CMOS is inadequate in efficiency and there is a need for specialized technologies such as SOI or GaN. This tutorial attempts to allay such concerns and presents the key techniques for high power, high efficiency mm-Wave 5G PA design in deep submicron planar and FinFET bulk CMOS processes. It covers the design steps of reliable high power generation all the way from transistor level layout to active and passive on-chip power combining followed by a prediction of saturated output power (Psat) and its corresponding maximized power added efficiency (PAE) for a 3-stage PA. Finally, the tutorial will conclude with the measured results of two 39GHz PA prototypes in 16nm FinFET and 28nm planar bulk CMOS processes.
Digital Power Amplifiers and Transmitters Based on RF Digital-to-Analog Converter
Sangmin Yoo, Michigan State University

In the era of the internet of things (IoT) and 5G communication, small, linear, and power-efficient wireless power amplifiers (PAs) and transceivers are critical for the small form factor, high-data throughput, and extended battery life of many mobile devices. On the other hand, innovations in analog/RF circuits have been driven by rapidly-evolving semiconductor technology in line with Moore’s law. Digital PA and transmitter (Tx), based on RF digital-to-analog converter (DAC) architecture, have shown great promises for Tx systems with small area and excellent energy efficiency. The digital PA and Tx architecture, mostly based on digital circuits and switches, directly benefits from the advances in state-of-the-art nanometer-scale CMOS technology. The future of digital PA/Tx in wireless systems is not far away. This talk will give an introduction to the digital PA, and also cover recent advances, directions, and benefits that the wireless digital PA/Tx will bring about. Recent design examples will also be discussed. A polar switched-capacitor (SC) digital PA with 30dBm peak POUT demonstrates several efficiency peaks down to 18dB power backoff (PBO) associated with efficiency boosting techniques such as class-G, Doherty, and time-interleaving. A complete quadrature SC digital Tx with 13dBm peak POUT demonstrates a very small area and a low power consumption. These recent digital PA and digital Tx prototypes also show a great linearity of <-40dB EVM over >20dB POUT range without any digital predistortion (DPD) for an 802.11 signal.

Envelope Tracking for 5G and mm-wave Power Amplifiers
Johana Yan, Maxentric

The demand for high data rates and better throughput has driven 5G communication systems to use higher order modulations. To overcome the efficiency degradation in power amplifiers in the presence of such waveforms, advance power amplifier architectures are needed. Among them is the envelope tracking power amplifier (ETPAs). In this talk, ETPAs based on both analog and digital modulators will be described and compared. Analog modulators, with hybrid architectures of different switching and linear stages in parallel and series configurations, and digital modulators, producing envelope approximates use as power DACs, multi-switchers, or tap-changers, are compared in terms of their performance merits (waveform fidelity, bandwidth, efficiency, etc), with emphasis on 5G applications. ETPAs designs and considerations for enabling digital communication systems with multi-beam/multi-channel transmission will be discussed. Linearization techniques for both analog and digital ETPAs and multi-beam/multi-channel operation will be shown.
Sunday, March 22, 2020, 09:00 AM–12:15 PM

Educational Session 2: Phase-Locked Loops

Session Chair: Woogeun Rhee, Tsinghua University

09:00 AM

ES2-1
Beyond All-Digital PLL for RF and Millimeter-Wave Frequency Synthesis
Robert Staszewski, University College Dublin, Ireland

The past several years has seen proliferation of all-digital phase-locked loops (ADPLL) for RF, mm-wave and high-performance frequency synthesis due to their clear benefits of flexibility, reconfigurability, transfer function precision, settling speed, frequency modulation capability, and amenability to integration with digital baseband and application processors. When implemented in nanoscale CMOS, the ADPLL also exhibits advantages of better performance, lower power consumption, lower area and cost over the traditional analog-intensive charge-pump PLL. In a typical ADPLL, a traditional VCO got directly replaced by a digitally controlled oscillator (DCO) for generating an output variable clock, a traditional phase/frequency detector and a charge pump got replaced by a time-to-digital converter (TDC) for detecting phase departures of the variable clock versus the frequency reference (FREF) clock, and an analog loop RC filter got replaced with a digital loop filter. The conversion gains of the DCO and TDC circuits are readily estimated and compensated using ‘free’ but powerful digital logic.

10:30 AM

Break

10:45 AM

ES2-2
Basics of Closed- and Open-Loop Fractional Frequency Synthesis
Sudhakar Pamarti, University of California, Los Angeles

Fractional frequency synthesis is employed in a wide variety of applications, and the circuits that realize fractional frequency synthesis come in several forms. This talk presents the basics of fractional frequency synthesis by roughly grouping them into closed loop approaches such as those based on phase locked loops, and open loop approaches such as those based on fractional dividers and digital-to-phase converters. The talk will describe how these systems work, focusing on commonalities such as the use of digital delta sigma modulators, and on unique differences. The talk will also explore metrics such as phase noise, jitter, and spurious tones in these systems using examples wherever appropriate.

12:15 PM

Lunch Break
Low-Spur PLL Architectures and Techniques
Mike Shuo-Wei Chen, University of Southern California

One key design objective of a frequency synthesizer is to minimize the spurious tones, as they can degrade the overall jitter performance or cause other unwanted system-level impairments. In this tutorial, we will examine the sources of the spurious tone generation in different PLL architectures and operation modes. We will overview several design techniques to mitigate the spurious tones. Lastly, we will go over several real PLL design examples that demonstrate low-spur performances.

ES2-4
Subsampling PLLs for Frequency Synthesis and Phase Modulation
Nereo Markulic, IMEC, Leuven, Belgium

The tutorial starts with a basic/introductive overview of modern frequency synthesis techniques, delivering basic operation theory in an intuitive fashion. A point of attention is in this context brought to recent subsampling PLL architecture. This architecture overcomes the performance boundaries typically encountered in classical implementations and is redefining today’s state-of-the-art frequency synthesis. We will try to explain why. The following part of the tutorial explores the subsampling loop in context of state-of-the-art fractional synthesis and phase modulation. We show how to enable fractional-N multiplication modes, while retaining benefits of low-noise subsampling operation. This can be achieved by introducing digital-to-time converter (DTC)-based time domain signal processing. We will discuss potential limitations of this block, and how to overcome them in the analog, or in the digital domain. The versatility of the DTC-based subsampling PLL will further be discussed in context of phase/frequency modulation, which is crucial for accurate polar signaling. We will investigate classical loop-bandwidth limitations and explore how two-point modulation principles can elegantly be applied in context of the explored loop. We will openly discuss potential weak-points of this environment – and how to address them. This talk insists on an intuitive, rather than a strict, mathematical approach to PLLs. It starts from the basic concepts and then gradually expands in complexity, while clearly highlighting the key ideas and pointing to state-of-the-art embodiments.

Educational Session 3: Transceivers (5G /IoT)
Session Chair: Yanjie Wang, South China University of Technology

5G RF Transceiver Design for EN-DC and MmWave
Jongwoo Lee, Samsung
To carry on the explosion of mobile data traffic, cellular networks have evolved to enhance air capacity with emerging 5G New Radio (NR) technologies. By 2020 demand and need for the mobile broadband will be very high and existing system will not be able to fulfill the user demand globally. Thanks to carrier aggregation (CA), higher order modulation up to 1024 QAM, and advanced MIMO techniques, the NR devices can attain up to several Gb/s peak data rate. The demand for high bandwidth has created a need for exploring high-frequency spectrum over 3 GHz while sustaining legacy LTE bands for LTE-NR dual connectivity (EN-DC). To increase the total aggregated bandwidth, a sophisticated CA operation is mandatory. The important thing is that hundreds of the existing LTE-A CAs still need to be supported. In addition, supporting legacy 2G/3G/4G radio operation is also critical for commercial global roaming. Because the user equipment (UE) requires small form-factor and low power consumption, a single-chip RF transceiver is essential to cover both NR and legacy protocols, simultaneously. To accelerate the 5G main features such as enhanced mobile broadband (eMBB) and ultra-reliable low-latency communications (URLLC), 5G mmWave communication system will be capable to provide low latency, high speed internet connection to the users across the globe in an efficient manner.

10:30 AM

Break

10:45 AM

ES3-2
Design of RF Transceivers for Medical Applications in 5G/IoT Era
Zhihua Wang, Tsinghua University

In the upcoming 5G era, mobile communication system can provide extremely high speed, extremely low latency, and almost unlimited addresses for everything in the universe. On the other hand, with the aging of the population and the improvement of people’s living standards, the requirements for health and medical care are becoming more and more urgent and effective. The demand of medical electronic devices, which is one of the important types of IoT in 5G era, to make the medical devices smaller and smarter, will be one of the driving force of integrated circuits and systems. The implantable medical devices (IMD’s), which are fully or partially implanted in the human bodies through surgeries, have a series of strict technical requirements including the choice of frequency and bandwidth, low power consumption, data rate, signal modulation method, disturbing and interference etc. This lecture focuses on a recently proposed technique in the art of radio transceiver design to reduce power consumption and area occupation. A set of miniature IMD’s have been implemented using this ultra-low power transceiver which can be integrated in different application specific systems-on-a-chip (SoC’s).

12:15 PM

Lunch Break

01:30 PM

ES3-3
Body Area Network – Connecting Things Together Around the Human Body
Jerald Yoo, National University of Singapore

Body Area Network (BAN) provides an attractive means for continuous and pervasive health monitoring, yet its unique and harsh environment gives circuit designers many challenges. As human body absorbs the majority of RF energy around GHz band, existing RF radio may not be an ideal for communications between and on-body sensors. In order to solve the issues, this education session talk presents the Body Coupled Communication (BCC)-based BAN. The BCC BAN utilizes human body itself as a
communication medium, which has orders of magnitude less pathloss when compared to RF based BAN. We will cover three types of BCC-BAN: 1) capacitive coupling, 2) magnetic coupling and 3) galvanic coupling. For each type, we will explore its channel characteristics followed by design considerations and transceiver implementation examples. I will then discuss what circuit designers should consider in such non-conventional environments. Low energy circuit techniques to overcome their limitations will also be discussed. We will then review their various system aspects of the BAN, including powering up the wearables using the wearable BAN.

03:00 PM
Break

03:15 PM
ES3-4
Fundamentals of Modern mmW Radars
Brian Ginsburg, Texas Instruments

mm-Wave radars are a key sensor for modern automotive driver assistance systems and have emerging uses in building and factory automation, as well as human interactive motion sensing. This tutorial will cover the basic radar parameters including resolution, accuracy, and maximum range, and show how those are linked to fundamental system specifications. Frequency modulated continuous wave (FMCW) is the dominant waveform. Detailed examples will be given of a fast chirp FMCW implementation. Finally, recent radar advances, including PMCW modulation, imaging radars, and integrated antennas will be discussed.

Sunday, March 22, 2020, 09:00 AM–12:15 PM

Educational Session 4: Data Converters and Interface Circuits

Session Chair: Nan Sun, The University of Texas at Austin

09:00 AM
ES4-1
Backend Improvement in ΔΣ ADCs
Nima Maghari, University of Florida

Delta-Sigma modulators are widely used in applications ranging from low frequency and audio to wideband wireless receivers. Several key advantages such as anti-aliasing filtering, reduced sensitivity to some circuit non-idealities such as lowered opamp gain requirement, wide dynamic range among others have contributed to the success of these structures. However, as the move towards higher data rates and wide bandwidth is becoming more dominant, the limiting factor of delta-sigma ADCs becomes the achievable sampling speed to maintain the efficiency of the oversampling ratio. Consequently, comprehensive efforts have been dedicated in improving the backend quantization and excess loop delay compensation in the past decade leading to various innovations in circuit and system level. However, a comprehensive study of the behavior, the advantages and drawbacks of these techniques is missing from the literature and textbooks. In this talk, the effects of back-end quantizer in ΔΣ ADCs are discussed in details, the new emerging quantizers and excess loop-delay compensation schemes are presented and the advantages and drawbacks of each will be analyzed.
Conventional opamps have not scaled gracefully into nanoscale CMOS, and the quest for a general-purpose replacement continues to challenge the research community. This has fundamentally reshaped the field of ADCs in the last decade, where designers have been forced toward architectures that avoid linear amplifiers as much as possible. This evolutionary pressure has in many ways been a boon, stimulating new approaches and ways of thinking. But it also raises the question: what opportunities for creativity and innovation did we lose when we left opamps behind? What impact would a viable successor have on the ADC landscape? Ring amplification is an emerging technique that offers the possibility of high efficiency, high performance, scalable, and general-purpose switched capacitor amplification. This talk will begin with a discussion of what exactly a “ringamp” is, how it works, and why it works so well. We will then go through a practical design example and see how the modeling and validation process is fundamentally different from conventional opamp design. We will also consider challenges such as PVT robustness. With a foundation in place, we will expand to considerations of topology choices and performance enhancements that can be used to build the optimal ringamp for a given application.

Current-steering Digital-to-Analog Converters (DACs) are commonly the architecture of choice for analog signal synthesis from MHz to sub-THz frequencies in a variety of applications ranging from wireless and wired communication, instrumentation, imaging to defense among others. This tutorial will guide the audience from the basic architectural concepts and simplest circuit implementations to the different types of impairments and ways to mitigate them. Trade-offs, circuits and layout techniques to overcome them, and examples of actual high-speed DACs embodying the different concepts will be discussed in an intuitive fashion, providing the audience with selected literature references for deepening the material as needed.

In the last 60 years, microfabrication techniques developed for ICs have driven exponential growth in the number of individual brain cells that can be recorded from simultaneously, albeit with a shallower slope compared to Moore’s law (doubling every ~7 years). At the current state of the art, analog front-ends for
neural recording have become a major bottleneck in understanding the brain, and are also seen as a limitation for potential human applications of large scale neural interfacing. This tutorial will first review established solutions for signal conditioning and data conversion in neural recording, including both architecture and circuit implementation. New techniques that march the data converter closer to the electrode sites will be presented and analyzed, including direct delta-sigma conversion and rapidly multiplexed Nyquist approaches. Tradeoffs in power, area, and system complexity will be highlighted, as well as application specific design criteria that motivate further innovation.

Sunday, March 22, 2020, 09:00 AM–10:30 AM

MathWorks Sessions (Included in registration)

09:00 AM

Introduction to IBIS-AMI

Mike Mayer
MathWorks

The speed of serial communication links (SerDes) continues to climb, and design complexity grows with it. IBIS-AMI models are a standardized way for SerDes designers to share a behavioral model of their chip with downstream system designers such as board-level signal integrity engineers. Creating IBIS-AMI models is now part of the workflow for SerDes designers, but it is a complex and time consuming task which requires knowledge of the IBIS-AMI specification, SerDes, signal integrity, and C programming. This talk covers the background of IBIS-AMI, the basics of the specification, and approaches to generating standard models more efficiently.

- What is IBIS and IBIS-AMI?
- Why behavioral models?
- IBIS History
- IBIS-AMI for SerDes
- IBIS-AMI for DDR5
- Creating IBIS-AMI models
- Using IBIS-AMI models
Monday, March 23

Monday, March 23, 2020, 08:30 AM–08:50 AM
Welcome and Opening Remarks

Monday, March 23, 2020, 08:50 AM–09:40 AM
Session 1: Keynote Session

08:50 AM

Vivek De, Intel Fellow, Director of Circuit Technology Research in Intel Labs, Intel

Title: Attack-Resistant Energy-Efficient SoC for Smart & Secure IoT

Abstract: We will discuss SoC design challenges and opportunities for smart and secure cyberphysical systems in the emerging world of IoT, focusing on two distinct areas: (1) how to deliver uncompromising performance and user experience while minimizing energy consumption, and (2) how to provide cryptographic-quality “roots of trust” in silicon and resistance to physical side channel attacks with minimal overhead. We will present SoC designs that span a wide range of performance and power across diverse platforms and workloads, and achieve robust near-threshold-voltage (NTV) operation in nanoscale CMOS. We will discuss techniques to overcome the challenges posed by device parameter variations, supply noises, temperature excursions, aging-induced degradations, workload and activity changes, and reliability considerations. True Random Number Generator (TRNG) and Physically Unclonable Function (PUF) circuits, the two critical silicon building blocks for generating dynamic and static entropy for encryption keys and digital fingerprints, respectively, will be presented. We will also discuss power and electromagnetic physical side-channel-attack detection and mitigation techniques for enabling robust hardware security.

Biography: Vivek De is an Intel Fellow and Director of Circuit Technology Research in Intel Labs. He is responsible for providing strategic technical directions for long term research in future circuit technologies and leading energy efficiency research across the hardware stack. He has 295 publications in refereed international conferences and journals with a citation H-index of 79, and 227 patents issued with 32 more patents filed (pending). He received an Intel Achievement Award for his contributions to an integrated voltage regulator technology. He is the recipient of the 2019 IEEE Circuits and System Society (CASS) Charles A. Desoer Technical Achievement Award for “pioneering contributions to leading-edge performance and energy-efficient microprocessors & many-core system-on-chip (SoC) designs”. He received the 2017 Distinguished Alumnus Award from the Indian Institute of Technology (IIT) Madras. He received a B.Tech from IIT Madras, India, a MS from Duke University, Durham, North Carolina, and a PhD from Rensselaer Polytechnic Institute, Troy, New York, all in Electrical Engineering. He is a Fellow of the IEEE.
Session 2: Trust: Innovations in Security Circuits

Session Chair: Elkim Roa, Universidad Industrial de Santander
Session Co-Chair: Carlos Tokunaga, Intel Corporation

This session features papers in security circuits for trustworthy systems. The first two papers showcase authentication systems, one with a confined signal within the body, followed by a system using visible-light based interrogation. The last two papers feature two security entities, an AES-256 engine resilient to deep learning attacks, and a bit-error free SRAM-based physically unclonable function.

10:00 AM
Introduction: Trust: Innovations in Security Circuits

10:05 AM
2-1
A 415 nW Physically and Mathematically Secure Electro-Quasistatic HBC Node in 65nm CMOS for Authentication and Medical Applications
Shovan Maity¹; Nirmoy Modak¹; David Yang¹; Shitij Avlani¹; Mayukh Nath¹; Josef Danial¹; Debayan Das¹; Parikha Mehrotra¹; Shreyas Sen¹
¹School of Electrical and Computer Engineering, Purdue University

In this paper, we design a secure HBC SoC node, which uses EQS-HBC for physical security and an AES-256 engine for mathematical security. The SoC consumes 415nW power with an active power of 108nW for a data rate of 1kbps, suitable for applications such as secure authentication and remote physiological monitoring applications.

10:30 AM
2-2
An Authentication IC with Visible Light Based Interrogation in 65nm CMOS
Edward Lee¹; Nael Mizanur Rahman¹; Venkata Chaitanya Krishna Chekuri¹; Saibal Mukhopadhyay¹
¹Georgia Institute of Technology

An authentication IC with Visible-Light based power and data transfer for interrogation consuming 2.29 µW of standby power is presented in 65nm CMOS. An on-chip regulator boosts optical energy harvested by external diodes to power encryption and sensing. On-chip light sensing using CMOS photodiodes achieves 53.8kbps data download rate. An 64-bit PRINCE cipher is implemented for authentication.
Deep Learning Side-Channel Attack Resilient AES-256 using Current Domain Signature Attenuation in 65nm CMOS
Debayan Das¹; Josef Danial¹; Anupam Golder²; Santosh Ghosh³; Arijit Raychowdhury²; Shreyas Sen¹
¹Purdue University; ²Georgia Institute of Technology; ³Intel Labs

This paper presents a current domain signature attenuation (CDSA) circuit fabricated in 65nm CMOS to prevent deep-learning power side-channel analysis (DLSCA) attacks on cryptographic ICs. The countermeasure embeds the crypto core (AES256) within the CDSA hardware to suppress the critical signature by >350x before it reaches the power supply pin. Measurements show that 256-class deep-neural-network (DNN) model can be fully trained (>99.9% test accuracy) using

A 0.5-V 2.07-fJ/b 497-F2 EE/CMOS Hybrid SRAM Physically Unclonable Function with < 1E-7 Bit Error Rate Achieved through Hot Carrier Injection Burn-in
Kunyang Liu¹; Hongliang Pu¹; Hirofumi Shinohara¹
¹Waseda University

This paper describes an EE/CMOS hybrid SRAM PUF with key features including (1) zero bit error at all VT corners from 0.5 to 0.7 V and −40 °C to 120 °C via HCI burn-in; (2) a data latching scheme using the hybrid SRAM characteristic, which enables low-voltage operation down to 0.5 V; (3) high energy efficiency with 2.07 fJ/b core energy at 0.5 V; and (4) a small footprint of 497 F2.

Session 3: PLL and VCO Techniques

Session Chair: Wanghua Wu, Samsung
Session Co-Chair: Amr Fahim, Broadcom

10:00 AM
Introduction: PLL and VCO Techniques

10:05 AM Best Student Paper Candidate

A 7.7~10.3GHz 5.2mW −247.3dB-FOM Fractional-N Reference Sampling PLL with 2nd Order CDAC Based Fractional Spur Cancellation In 45nm CMOS
Dongyi Liao¹; Fa Foster Dai¹
¹Auburn University

In this paper, a fractional-N reference sampling PLL (RSPLL) with capacitor digital-to-analog converter
(CDAC) based quantization error canceller is presented. The prototype chip was fabricated in a 45nm PDSOI CMOS process. Measurement showed an output frequency range covering 7.7~10.3GHz with an integrated jitter of 190fs and an in-band fractional spur level of -56dBc. The entire PLL consumes 5.2mW and achieves a FoM of -247.3dB.

10:30 AM Best Student Paper Candidate

3-2:
A Wideband 180-GHz Phase-Locked-Loop Based MSK Receiver
Shenggang Dong¹; Ibukunoluwa Momson¹; Sandeep Kshattry¹; Pavan Yelleswarapu¹; Wooyeol Choi¹; Wooyeol Choi²; Kenneth O¹
¹The University of Texas at Dallas; ²Oklahoma State University

A 180 GHz mixer-first phase-locked-loop based MSK receiver is demonstrated in 65-nm CMOS with -24dBm input sensitivity at a BER

10:55 AM

3-3
A 0.55mW Fractional-N PLL with a DC-DC Powered Class-D VCO Achieving Better than -66dBc Fractional and Reference Spurs for NB-IoT
Hossein Rahmanian Kooshkaki¹; Patrick Mercier¹
¹University of California, San Diego

This PLL meets NB-IoT specifications with the best fractional spur-power performance among state-of-the-art low-power single-supply PLLs while using a low-power class-D VCO with a small resistor, improving phase noise by 3dB and reducing power consumption by 25% without any area overhead. The VCO, working at 729-960 MHz, is powered by an on-chip DC-DC converter with 90% efficiency without degrading the spur performance of the PLL, which is -67.5dBc for reference and -66.3dBc for fractional spurs.

11:20 AM

3-4
A Compact Dual-Core 26.1-to-29.9GHz Coupled-CMOS LC-VCO with Implicit Common-Mode Resonance and FoM of -191 dBC/Hz at 10MHz
Amir Masnadi¹; Mohammad Mahani¹; Hossein Miri Lavasani²; Shahriar Mirabbasi³; Sudip Shekhar³; Rod Zavari³; Hormoz Djahanshahi¹
¹Microchip Technology; ²Case Western Reserve University; ³University of British Columbia

A compact dual-core, single-transformer, and low-power coupled-Class-C voltage-controlled oscillator is presented. The single transformer provides resonance at both differential and common modes, eliminating the need for an explicit inductor for the common-mode resonance. It is implemented vertically using two top metal layers, resulting in significant area saving compared to the state-of-the-art. The VCO consumes 3.4 mW at 27.45 GHz and exhibits a phase noise of -127.5 dBc/Hz at 10 MHz offset resulting in an FoM of -191 dB/Hz.
Monday, March 23, 2020, 10:00 AM–12:00 PM

Session 4: Forum: Electronics for Vehicles of the Future

Sponsored by SiFive
Session Chair: Hanh-Phuc Le, University of California San Diego
Session Co-Chair: Dina El-Damak, USC

10:00 AM

4-1
Edge Computing and Resilient Hardware in Future Mobile and Autonomous Systems
Vijay Janapa Reddi, Harvard

10:30 AM

4-2
High-Performance Systems-on-Chip (SoCs) for ADAS
Adam Sherer, Cadence

11:00 AM

4-3
Electronics for Vehicles of the Future – Gate Drivers with Integrated Power Management
Sri Navaneeth Easwaran, Texas Instruments

11:30 AM

4-4
LIDAR Technology
Ron Kapusta, ADI

Monday, March 23, 2020, 10:00 AM–12:10 PM

Session 5: System Oriented Design Foundations

Session Chair: Mitsuhiko Igarashi, Renesas Electronics Corporation
Session Co-Chair: Luca Daniel, Massachusetts Institute of Technology

The session focuses on packaging technologies and design productivity solutions that enable large scale system development and integration.

10:00 AM

Introduction: System Oriented Design Foundations

10:05 AM Invited Paper

5-1
Multi-die Integration Using Advanced Packaging Technologies
Hyung-Jin Lee¹; Ravi Mahajan¹; Ramune Nagisetty¹; Manish Deo¹; Farhana Sheikh¹

¹Intel Corporation
This paper presents 2-D and 3-D multi-die integration technologies to create new types of system platforms that co-integrate multiple dies on package that may or may not be implemented in the same technology. The paper first presents challenges of process scaling and coexistence of logic, IO, and RF, and discusses new system/platform requirements from emerging applications. Then on-package 2-D/3-D multi-die integration technologies are presented. Finally, we present three innovative CPU and FPGA leveraging these technologies.

10:55 AM

5-2
A Fully Synthesized Integrated Buck Regulator with Auto-generated GDS-II in 65nm CMOS Process
Venkata Chaitanya Krishna Chekuri¹; Nael Mizanur Rahman¹; Edward Lee¹; Arvind Singh¹; Saibal Mukhopadhyay¹
¹Georgia Institute of Technology

This paper presents a fully synthesized integrated inductive buck regulator with flexible precision variable frequency feedback loop implemented in 65nm CMOS process using an automated design and GDSII generation flow. The design demonstrates 0.52V/us output ramp and 200ns response time to 30mA/75ps load transient in a high precision mode with 120MHz switching frequency, and peak efficiency of 79.3%.

11:20 AM Invited Paper

5-3
HL5: A 32-bit RISC-V Processor Designed with High-Level Synthesis
Paolo Mantovani¹; Robert Margelli¹; Davide Giri¹; Luca Carloni¹
¹Department of Computer Science - Columbia University

We show that high-level synthesis (HLS) can simplify the design of processors while enhancing their customization and reusability. We present HL5 as the first 32-bit RISC-V microprocessor designed with SystemC and optimized with a commercial HLS tool. By describing the challenges and opportunities of applying HLS to processor design, our paper aims also at sparking a renewed interest in HLS research.

Monday, March 23, 2020, 08:30 AM–08:50 AM

Keynote Luncheon

12:00 PM

Microelectronics for Brain-Computer Interface Applications
Lawrence Larson, Sorensen Family Dean of the School of Engineering, Brown University
As integrated circuit technology becomes increasingly deployed to address the challenges of human health, the opportunity to interface directly to the brain is one of the most exciting and high impact
opportunities. Challenges like epilepsy, paraplegia, quadriplegia, locked-in syndrome, MLS, Parkinsons, and many others, are being addressed by this new technology. The recent announcement of significant advances by Neuralink is one example of the potential. This talk will summarize some of the challenges and opportunities of brain-computer-interface (BCI) technology from an integrated circuit perspective.

Bio: Larry Larson received his B.S. from Cornell University and his Ph.D. from UCLA. From 1980 to 1996, he was with Hughes Research Laboratories, Malibu, CA, USA, where he directed the development of high-frequency microelectronics in GaAs, InP, Si/SiGe, and MEMS technologies. In 1996, he joined the faculty of the University of California at San Diego (UCSD), where he was the inaugural holder of the Communications Industry Chair. From 2001 to 2006, he was Director of the UCSD Center for Wireless Communications, and from 2007 to 2011, was Chair of the Department of Electrical and Computer Engineering. In 2011, he joined Brown University, Providence, RI, USA, where he is Sorensen Family Dean of the School of Engineering. He has authored or coauthored over 300 papers and has coauthored four books. He holds over 40 U.S. patents.

Monday, March 23, 2020, 02:00 PM–05:15 PM

Session 6: Emerging Devices and Sensing Applications

Session Chair: Drew Hall, University of California San Diego
Session Co-Chair: Kiichi Nitsu, Nagoya University

This session covers emerging devices and sensing applications ranging from high performance thin film devices, their use in circuits and systems, and as biosensors. The first paper is an invited paper that reviews piezoelectric and ferroelectric devices with applications from filters and energy harvesters to ferroelectric memories. The second paper presents full-swing logic gates realized using only n-type a-Si:H thin film transistors demonstrated by implementing a decoder. The fourth paper presents an integrated readout circuit dedicated to sensing transcutaneous oxygen employing a fluorescence-based method to sense the oxygen molecules diffusing through the skin. The fifth paper presents a dual-factor authentication protocol based on detection of tap patterns for implantable medical device security. The last paper presents a highly-efficient and low-minimum input voltage energy harvester for biofuelcells with a cold startup enhancement technique.

02:00 PM

Introduction: Emerging Devices and Sensing Applications

02:05 PM Invited Paper

6-1

Doping of Aluminum Nitride and the Impact on Thin Film Piezoelectric and Ferroelectric Device Performance

Roy Olsson III; Zichen Tang; Michael D’Agati

1University of Pennsylvania

Recently, the substitutional doping of scandium (Sc) for aluminum (Al) to form aluminum scandium nitride (AlScN) has been studied to enhance the piezoelectric properties and introduce ferroelectric properties into aluminum nitride (AlN) based material systems. This paper reviews the piezoelectric and ferroelectric performance that has been demonstrated, and the impact of the material properties on the performance
Realization of an Energy-Efficient, Full-Swing Decoder with Unipolar TFT Technology
Qing Li¹; Czang-Ho Lee¹; William Wong¹; Manoj Sachdev¹
¹University of Waterloo

Realization of full-swing logic gates is challenging using only one transistor type. Most such logic gates lack full-swing with excessive direct-path leakage current. Consequently, realization of multi-stage logic circuits becomes unrealistic. We propose novel logic gates without these problems. As a proof, we fabricated a 3-to-8 decoder with n-type a-Si:H TFTs. Measurement results demonstrated that the circuit could maintain unity stage-to-stage gain, while reduce 85% of static leakage current and 20% footprint against prior implementations.

A Fully-Printed Organic Smart Temperature Sensor for Cold Chain Monitoring Applications
Marco Fattori¹; Carlos Mendes da Costa¹; Joost Fijn¹; Enrico Genco¹; Pieter Harpe¹; Eugenio Cantatore¹; Micael Charbonneau²
¹Eindhoven University of Technology; ²CEA-LITEN

This paper presents a smart temperature sensor on RFID suitable for fresh food monitoring. The system-on-foil exploits printed resistors and a time-based printed OTFT interface to convert temperature to a PWM representation and enable wireless RF communication at 13.56MHz. It achieves 270mKrms resolution for a 2s conversion time, a resolution FOM of 294μJ·K² and a 3σ inaccuracy of ±1.2°C over the temperature range 3°C to 27°C, after systematic non linearity removal and 3-point calibration.

An Integrated Readout Circuit for a Transcutaneous Oxygen Sensing Wearable Device
Ian Costanzo¹; Devdip Sen¹; Ulkuhan Guler¹
¹Worcester Polytechnic Institute

This paper presents an integrated readout dedicated to sensing transcutaneous oxygen, a first of its kind. The readout circuit employs a fluorescence-based method to sense the oxygen molecules diffusing through the skin. The system uses a platinum porphyrin thin film, a blue light-emitting diode that excites
the thin film, and a photodiode that captures the red light emitted from the thin film. The paper presents the circuit design, oxygen measurement curve, and preliminary ex vivo testing.

04:25 PM

6-5
A Low-Power Dual-Factor Authentication Unit for Secure Implantable Devices
Saurav Maji¹; Utsav Banerjee¹; Samuel Fuller¹; Samuel Fuller²; Mohamed Abdelhamid¹; Phillip Nadeau²; Rabia Yacigii³; Anantha Chandrakasan¹
¹Massachusetts Institute of Technology; ²Analog Devices; ³Boston University

This paper presents a dual-factor authentication protocol and its low-power implementation for security of implantable medical devices. The protocol incorporates user's touch based voluntary response in addition to cryptographic authentication. The wake-up unit of the test-chip consumes only 735pW of idle state power at 20.15Hz and 2.5V. The dual-factor authentication unit, accelerated in hardware, consumes only 8uW power at 660kHz and 0.87V. The prototype was also tested using in-vitro measurements.

04:50 PM
Best Student Paper Candidate

6-6
A Fully-Integrated Biofuel-Cell-Based Energy Harvester with 86% Peak Efficiency and 0.25V Minimum Input Voltage Using Source-Adaptive MPPT
Arian Hashemi Talkhooncheh¹; You Yu¹; Abhinav Agarwal¹; William Kuo¹; Kuan-Chang (Xavier) Chen¹; Minwo Wang¹; Gudrun Hoskuldsdottir¹; Wei Gao¹; Azita Emami¹
¹California Institute of Technology

This paper presents a cold-starting energy harvester in 65nm CMOS with source degradation tracking and automatic MPPT. A power-efficient architecture is proposed to keep the internal circuitry operating at 0.4V while regulating the output voltage at 1V using switched-capacitor DC-DC converters and a hysteretic controller. Peak efficiency of 86% is achieved at 0.39V input voltage and 1.34μW of output power with 220nW of internal average power consumption. Integrated operation with lactate biofuel cells is demonstrated.

Monday, March 23, 2020, 02:00 PM–05:15 PM

Session 7: RF & mm-WAVE Circuits and Transceivers

Session Chair: Debopriyo Chowdhury, Broadcom
Session Co-Chair: Swaminathan Sankaran, Texas Instruments

This session presents state of the art research on RF and mm-wave circuits and transceivers. The session begins with a wideband, 12-bit I/Q interleaved direct digital RF modulator from 0.5-3GHz with 320 MHz modulation bandwidth. Moving up higher in frequency, the next paper presents a two-way current combining power amplifier for 28GHz wireless communication in 22nm SOI technology. This will be followed by a mixer first extremely wideband 43-97GHz receiver front-end for massive MIMO applications. We then move onto full transceivers - starting with a 6-8 GHz pulse based transceiver for ranging, followed by a in depth review of millimeter-wave CMOS phased-array transceivers for 5G NR applications. Moving up even higher in frequency,
the session ends with a 113GHz transceiver in 28nm CMOS supporting an 80Gbps wireless link.

02:00 PM

Introduction: RF & mm-WAVE Circuits and Transceivers

02:05 PM

7-1
A 0.5--3 GHz I/Q Interleaved Direct-Digital RF Modulator with up to 320 MHz Modulation Bandwidth in 40 nm CMOS

Yiyu Shen; Rob Bootsman; Morteza Alavi; Leo de Vreede

Delft University of Technology

This paper presents a wideband, 12-bit I/Q interleaved direct-digital RF modulator (DDRM) realized in 40-nm CMOS technology. The proposed digital-intensive quadrature up-converter features a novel I/Q-mapping unit cell to boost RF power, in-band linearity, and out-of-band spectral purity. The modulator provides more than 14 dBm RF output power. When applying a 320-MHz 256-QAM signal at 2.4 GHz, the measured ACLR and EVM is better than -43dBc and -32dB, respectively, without applying any digital predistortion.

02:30 PM

7-2
A 28GHz Two-Way Current Combining Stacked-FET Power Amplifier in 22nm FD-SOI

Zhiwei Zong; Zhiwei Zong; Xinyan Tang; Xinyan Tang; Johan Nguyen; Johan Nguyen; Khaled Khalaf; Giovanni Mangraviti; Yao Liu; Piet Wambacq; Piet Wambacq

IMEC; Vrije Universiteit Brussel; Pharrowtech

We present a two-way current combining power amplifier (PA) for 28GHz wireless communication. To boost the saturated output power (PSAT) and maintain a high power-added efficiency (PAE), a differential 3 stacked transistors structure is used for the unit PA cell. Measurement results show that the PA achieves a power gain of 27dB and a PSAT of 21.7dBm with a maximum PAE of 27.1% at 28GHz. The output 1dB compression point (P1dB) is 19.1 dBm.

02:55 PM

7-3
Mixer-First Extremely Wideband 43-97 GHz RX Frontend with Broadband Quadrature Input Matching and Current Mode Transformer-Based Image Rejection for Massive MIMO Applications

Amr Ahmed; Min-Yu Huang; Hua Wang

Georgia Institute of Technology

This work presents an ultra-wideband mixer-first front-end that can cover mmWave communications bands in the frequency range 43-97 GHz. The front-end employs a mmWave 90 degree coupler as an input stage in order to achieve wideband matching and RF quadrature signal generation. Passive mixer
and multi-gated gm3-cancellation IF amplifiers used to achieve and maintain high linearity across the frequency range. Also, the frond-end implements a current mode image rejection using a transformer based IF coupler.

03:20 PM

7-4
A 6-8GHz Multichannel Reconfigurable Pulse-Based Transceiver with 3.5ns Processing Latency and 1cm Ranging Accuracy for Secure Wireless Connectivity
Haixin Song¹; Woogeun Rhee¹; Zhihua Wang¹
¹Institute of Microelectronics

This paper describes a communication/ranging pulse-based transceiver that enables physical-layer security against relay attack. A reconfigurable transceiver system with concatenation operation is designed by having PPM/PWM-based two-bit communication between the prover and the verifier, significantly reducing the processing latency of the prover. Multichannel transmission with enhanced spectral efficiency and link margin are realized with channel hopping and subband hopping methods. The transceiver achieves

03:45 PM

Break

04:00 PM Best Invited Paper Candidate

7-5
Millimeter-Wave CMOS Phased-Array Transceiver Supporting Dual-Polarized MIMO for 5G NR
Kenichi Okada¹; Jian Pang¹
¹Tokyo Institute of Technology

In this presentation, a 28-GHz phased-array transceiver designed for the coming 5G NR will be introduced. A neutralized bidirectional technique with minimized chip area is employed for a low-cost system. The data rate is improved significantly with a 2x2 dual-polarization MIMO configuration. The talk concludes with a discussion on future directions of millimeter-wave wireless communication, based on Shannon and Friis equations.

04:50 PM

7-6
A Fully Integrated, Dual Channel, Flip Chip Packaged 113 GHz Transceiver in 28nm CMOS supporting an 80 Gb/s Wireless Link
Andrew Townley¹; Nima Baniasadi¹; Sashank Krishnamurthy¹; Constantine Sideris²; Ali Hajimiri³; Elad Alon¹; Ali Niknejad¹
¹University of California at Berkeley; ²University of Southern California; ³California Institute of Technology

In this paper, a mm-wave transceiver IC operating at 113GHz is demonstrated, achieving a single-
channel data rate of 80Gb/s. The transceiver achieves a high level of integration, including LO generation
circuitry, a bits-to-RF TX DAC, and two transceiver channels for polarization diversity. The chip is flip-chip
packaged onto a PCB with two orthogonally polarized antennas.

Monday, March 23, 2020, 02:00 PM–05:15 PM

Session 8: Analog Circuits and Systems

Session Chair: Jiangfeng Wu, Tongji University Shanghai China
Session Co-Chair: Ivan O’Connell, University College Cork

This session includes papers describing systems and circuits which open up new opportunities
for analog design. They include an invited paper on cryo-CMOS circuits, systems for fingerprint
recognition and voice activity detection, and circuits for rapid start-up of a crystal oscillator, high-
accuracy on-chip frequency reference, and ripple reduction in an instrumentation amplifier. The
papers in this session open up new opportunities for analog IC design. They describe systems
for fingerprint recognition and voice activity detection and circuits for cryogenic operation, rapid
crystal oscillator start up, high-accuracy on-chip frequency reference, and ripple reduction with
chopping.

02:00 PM

Introduction: Analog Circuits and Systems

02:05 PM

8-1
A 368 × 184 Optical Under-Display Fingerprint Sensor With Global Shutter and
High-Dynamic-Range Operation

Chih-Wen Lu¹; Ping-Hung Yin²; Ping-Hung Yin¹; Jia-Shyang Wang²; Keng-Li Chang³; Fu-Kuo Lin²;
Chia-Jung Chang²; Gen-Chiuan Bai²
¹National Tsing Hua University; ²TYRAFOS Technologies Co., LTD

This study proposes a 368 × 184 optical under-display fingerprint sensor. The prototype sensor features
low noise, low-power consumption, fast response time, and a smaller signal processing circuit area. A
dynamic range of 120 dB is achieved with 8-segment auto exposure and dark level adjustment with programmable gain control. The sensor has a chip size of 9.74 mm × 4.6 mm, a resolution of 1154 dpi,
and a sensing area of 73%.

02:30 PM Best Regular Paper Candidate

8-2
A 760nW, 180nm CMOS Analog Voice Activity Detection System

Marco Croce¹; Brian Friend²; Francesco Nesta²; Lorenzo Crespi²; Piero Malcovati¹; Andrea
Baschirotto³
¹University of Pavia; ²Synaptics; ³University of Milano-Bicocca

This paper presents an SNR based voice-activity detection circuit, which consumes 760nW, exploiting an
energy-efficient analog implementation with continuous-time non-linear operation and fully-passive
switched-capacitor processing.
CMOS circuits operating at cryogenic temperature (cryo-CMOS) are required in several low-temperature applications, e.g., in the cryogenic electronic interface for quantum processors. Such cryo-CMOS circuits must achieve extremely high performance while dissipating minimum power to be compatible with existing cryogenic refrigerators. This paper overviews the challenges and the opportunities in designing cryo-CMOS circuits, with a focus on analog and mixed-signal circuits, such as voltage references and data converters.

This paper presents a fast start-up crystal oscillator that reduces both start-up time and energy via an elegantly effective multi-path feedforward |Rn| boosting technique. To further improve start-up speed, yet with an imprecise on-chip ring oscillator, an optional dynamic pulse width injection is also proposed. The proposed fast start-up technique is implemented in 65nm process and tested with 20MHz and 16MHz crystals, achieve start-up times of 30µs and 34µs while consuming 11.1nJ and 13.2nJ, respectively.

A single-trim, high accuracy frequency reference is presented. The Colpitts LC-oscillator topology reduces the dependencies of the LC-tank quality factor on the oscillation frequency. With a fractional divider for frequency compensation it can serve as crystal-replacement. Measurements of the prototype (16 samples) in a 0.13µm high-voltage CMOS SOI process show ±120ppm accuracy from -50°C to 170°C. The oscillator dissipates 3.5mW from a 2.5V supply and has 220ppm/V supply-sensitivity without supply
A 13nV/√Hz 4.5μW Chopper Instrumentation Amplifier with Robust Ripple Reduction and Input Impedance Boosting Techniques
Liang Fang¹, Ping Gui¹
¹Southern Methodist Univeristy

This paper presents a 13nV/√Hz, 4.5μW Capacitively-coupled Chopper IA. A three-terminal varactor structure is proposed to improve the linearity of conventional varactor by 20 times and implemented in positive feedback loop to boost the input impedance by 1000 times. An improved dynamic offset zeroing technique is also proposed to suppress chopping ripple to a mean of 300uV and a standard deviation of 500uV. This design achieves a NEF of 1.3 and a PEF of 1.1.

Monday, March 23, 2020, 02:00 PM–03:45 PM
Session 9: Forum: IP Blocks: Challenges for Next Decade Complex SoCs

Sponsored by SiFive
Session Chair: Elkim Roa, Universidad Industrial de Santander

Hardware Specialization for Next-Generation Computer Vision SoCs
Paul Whatmough, Arm ML Research Lab

Challenges and Solutions for Domain-Specific Custom Silicon
Shubu Mukherjee, SiFive

Data Converter IPs for Next-Generation Automotive Radar and LiDAR SoCs
Denis Daly, Omni Design Technologies, Inc.
Session 11: Keynote Session

08:00 AM

Dr. Arjang Hassibi, Founder and CEO at InSilixa

Title: Custom ICs for Diagnostics: A timely Discussion

Abstract: In the past few months, the outbreak of COVID-19 has affected many lives in many countries. It also revealed many systematic deficiencies and gaps in our modern healthcare system that need to be addressed. One specific area that has had consequential shortcomings was the diagnosis of pathogen, particularly the absence (or delayed deployment) of an accurate test system worldwide. In this talk, we will take the opportunity to discuss and review custom IC technologies that have the potential address this unmet need, specifically integrated biosensors and biochips.

Biography: Arjang Hassibi (S’99–M’05–SM’10) received the B.Sc. degree (Hons.) from the University of Tehran in 1997, and the M.Sc. and Ph.D. degrees in electrical engineering from Stanford University in 2001 and 2005, respectively. He attended the post-doctoral training at the California Institute of Technology.

He is currently the CEO of InSilixa Inc., a start-up company that he founded in 2011. Prior to that, he was faculty member with the Electrical and Computer Engineering Department and the Institute for Cellular and Molecular Biology, The University of Texas at Austin.

He also has held various research and development positions in industry and academia, including being a research scientist at the Stanford Genome Technology Center and the CMOS High-Speed Integrated Circuits (CHIC) Laboratory at Caltech; visiting professor at IBM Research at Yorktown; and co-founder and VP of engineering at Xagros Genomics. His areas of interest and expertise all include within the intersection of biotechnology and engineering, specifically biosensors and bioelectronics, biomedical electronics, and integrated sensors.
The popularity of SAR ADCs keeps increasing thanks to its beneficial scaling trends. This is clearly highlighted in the first four papers in this session on advanced data converter techniques including a pipelined SAR ADC with a novel amplifier settling time enhancement, a ring-amplifier based pipelined SAR with dynamic deadzone control to enable an ultra-low supply voltage of 0.75 V, a secure SAR ADC utilizing current equalization to prevent power side-channel attacks and a 0.2 V supply SAR ADC utilizing clever comparator techniques. The last paper is an invited submission describing digital correction of DAC non-linearities in multi-bit feedback ADCs.

Introduction: Data Converter Techniques

09:05 AM

12-1

A 1.5GS/s 8b Pipelined-SAR ADC with Output Level Shifting Settling Technique in 14nm CMOS

Yuanming Zhu¹; Shengchang Cai¹; Shiva Kiran¹; Yanghang Fan¹; Pohsuan Chang¹; Sebastian Hoyos¹; Samuel Palermo¹

¹Department of Electrical and Computer Engineering, Texas A&M University

A single channel 1.5GS/s 8-bit pipelined-SAR ADC utilizes a novel correlated level shifting (CLS) settling technique to reduce the power and enable low-voltage operation of the dynamic residue amplifier. Fabricated in a 14nm FinFET technology, the ADC occupies 0.0013mm² core area and operates with a 0.8V supply. 6.6-bit ENOB is achieved at Nyquist while consuming 2.4mW, resulting in an FOM of 16.7fJ/conv.-step.

09:30 AM

12-2

A 72.6 dB SNDR 14b 100 MSPS Ring Amplifier Based Pipelined SAR ADC with Dynamic Deadzone Control in 16 nm CMOS

Martin Kinyua¹; Eric Soenen¹

¹TSMC

This work presents a ring amplifier based pipelined SAR ADC. It employs a dynamic deadzone control
circuit in the second stage inverter structure of a three stage amplifier, enhancing stability and enabling operation at ultra-low supply voltage of 0.75V. A 14 bit 100 MS/s prototype in 16nm consumes 2.5 mW and achieves SNDR and SFDR of 72.6dB and 86.5dB respectively, close to Nyquist input frequency, yielding a SNDR based FOM of 175.6dB without calibration.

09:55 AM

12-3
S2ADC: A 12-bit, 1.25MS/s Secure SAR ADC with Power Side-Channel Attack Resistance
Taehoon Jeong; Anantha Chandrakasan; Hae-Seung Lee
Massachusetts Institute of Technology

An ADC in sensing hardware can create a critical security loophole by revealing private sensor data through its power side-channel. This paper demonstrates a neural-network-based SAR ADC power side-channel attack (PSA) method that can extract A/D conversion results from ADC supply current waveforms with high accuracy and a current-equalizer-based PSA protection scheme that protects all ADC blocks from the proposed PSA method.

10:20 AM

12-4
A 0.2-V 10-bit 5-kHz SAR ADC with Dynamic Bulk Biasing and Ultra-Low-Supply-Voltage Comparator
Alexander Petrie; Whitney Kinnison; Yixin Song; Kent Layton; Shiuh-hua Wood Chiang
Brigham Young University; ON Semiconductor

A 10-bit 5-kHz SAR ADC under an ultra-low-supply-voltage of 0.2 V demonstrates a novel dynamic bulk biasing circuit to tolerate variations. A new comparator relaxes the stringent speed-noise trade-off under the 0.2-V supply. The measured ADC consumes 22 nW and exhibits an SNDR of 52.8 dB, yielding an FoM of 12.3 fJ/conv.-step. Measurements of multiple chips show the proposed dynamic bulk biasing successfully improves the yield by nearly twofold in the presence of supply variations.

10:45 AM Invited Paper

12-5
Digital Correction of DAC Nonlinearity in Multi-Bit Feedback A/D Converters
Pedram Payandehnia; Tao He; Yanchao Wang; Gabor Temes
School of Electrical Engineering and Computer Science, Oregon State University

In this paper, an overview of existing methods for correcting or mitigating the effects of DAC imperfections is presented. Also, a new foreground digital correction method is described for the mitigation of static mismatch errors in the binary-weighted DAC.
Session 13: Efficient Neural Network Acceleration

Session Chair: Brian Zimmer, Nvidia
Session Co-Chair: TBD

This session explores a wide variety of techniques to improve the energy efficiency of neural network computation, with the first two papers focusing on compute-in-memory approaches and the last two papers optimizing conventional digital techniques. The first paper surveys state-of-the-art compute-in-memory prototypes, while the second paper uses a compute-in-memory approach for keyword spotting acceleration. The third paper improves energy efficiency through variable-precision computation, and the last paper avoids redundant computation with zero skipping and reduced-precision pooling prediction.

09:00 AM

Introduction: Efficient Neural Network Acceleration

09:05 AM Invited Paper

13-1
Compute-in-Memory with Emerging Nonvolatile-Memories: Challenges and Prospects
Shimeng Yu1; Xiaoyu Sun1; Xiaochen Peng1; Shanshi Huang1
1Georgia Institute of Technology

This invited paper surveys the recent progresses of compute-in-memory (CIM) prototype chip designs with emerging nonvolatile memories (eNVMs) such as resistive random access memory (RRAM) technology. However, grand challenges exist for large-scale system design including the following: 1) substantial analog-to-digital (ADC) overhead; 2) scalability to advanced logic node limited by high write voltage of eNVMs; 3) process variations (e.g. ADC offset) that degrade the inference accuracy. Mitigation strategies and possible future research directions are discussed.

09:55 AM

13-2
KeyRAM: A 0.34 uJ/decision 18 k decisions/s Recurrent Attention In-memory Processor for Keyword Spotting
Hassan Dbouk1; Sujan Gonugondla1; Charbel Sakr1; Naresh Shanbhag1
1University of Illinois at Urbana-Champaign

This paper presents a 0.34uJ/decision deep learning-based classifier for keyword spotting (KWS) in 65nm CMOS with all weights on-chip. This work adapts a Recurrent Attention Model algorithm for the KWS, and employs an in-memory computing (IMC) architecture to achieve up to 9x savings in energy/decision and >23x savings in EDP of decisions over a state-of-the art IMC IC for KWS using the Google Speech dataset while achieving the highest reported decision throughput of 18.32k decisions/s.
10:20 AM

13-3
A 44.1TOPS/W Precision-Scalable Hardware Accelerator for Quantized Neural Networks in 28nm CMOS
Sungju Ryu¹; Hyungjun Kim¹; Wooseok Yi¹; Jongeun Koo¹; Eunhwan Kim¹; Yulhwa Kim¹; Taesu Kim¹; Jae-Joon Kim¹
¹Pohang University of Science and Technology

Quantized neural networks have been introduced to reduce computation time and energy when performing neural network algorithms. However, in the precision-scalable hardware, bit-reconfiguration logic significantly increases chip area. In this paper, we introduce a compact precision-scalable hardware accelerator. We improved peak performance per compute area by 5.1-7.7x and system-level energy-efficiency by 28-64% compared to previous precision-scalable accelerators.

10:45 AM

13-4
Deep Convolutional Neural Network Accelerator Featuring Conditional Computing and Low External Memory Access
Minkyu Kim¹; Jae-sun Seo¹
¹Arizona State University

This paper presents an ASIC accelerator for deep convolutional neural networks (DCNNs) featuring a novel conditional computing scheme that synergistically combines precision-cascading (PC) with full zero-skipping (ZS). By jointly optimizing the proposed algorithm and the hardware architecture, the prototype chip implemented in 40nm CMOS demonstrates a peak energy-efficiency of 8.88 TOPS/W at 0.9V supply and low external memory access of 55.31MB (or 0.0018 access/MAC) for ImageNet classification with VGG-16 CNN.

Tuesday, March 24, 2020, 09:00 AM–11:35 AM

Session 14: DC-DC Converters

Session Chair: Yan Lu, University of Macau
Session Co-Chair: Eric Soenen, TSMC

This session includes four original designs of DC-DC converters, as well as one invited review paper on ultra-low-power energy harvesting power management circuit design. The session starts with a Buck converter with a fast response active ramping voltage mode control scheme, followed by three papers on highly-integrated hybrid multilevel or multiple-output DC-DC converters achieving high efficiencies, fast responses, and small ripples/cross-talks. Last but not least, we dive into micro- or even pico-Watts-level power management units for IoT devices, focusing on the choice between analog and digital implementations.
Introduction: DC-DC Converters

09:05 AM

14-1

A 9.3mV / 5.2mV Load and Line Transients Fast Response Buck Converter with Active Ramping Voltage Mode Control

Wanyuan Qu¹; Xu Yang¹; Haixiao Cao¹
¹Institute of VLSI Design School of ISEE, Zhejiang University

A fast response active ramping voltage mode control scheme for a Buck converter design is presented. Analysis and measurements indicate that the scheme shows performance comparable to ripple-based controls while maintaining fixed frequency operation. Measurements show an under-/overshoot voltage of -12.7 mV and 9.3 mV, respectively, for load transitions between 100 mA and 500 mA. The line transient is 5.2 mV and -3.8 mV, respectively, for inputs between 12 V and 15 V.

09:30 AM

14-2

A 92.4% Efficient, 5.5V:0.4-1.2V, FCML Converter with Modified Ripple Injection Control for Fast Transient Response and Capacitor Balancing

Jan Rentmeister¹; Jason Stauth¹
¹Dartmouth College

This paper presents a highly-integrated, 5-level flying capacitor multilevel (FCML) DC-DC converter that uses augmented ripple-injection control to achieve fast transient response and flying capacitor voltage balance. The converter provides 5.5V:0.4-1.2V step down with robust load- and line-rejection, and peak efficiency of 92.4% and >80% efficiency at a 13.8:1 conversion ratio with peak current up to 1.4A. All power devices, bootstrap capacitors, and control functions are integrated on-chip; capacitors are die-attached using a custom assembly process.

09:55 AM

14-3

A Wide Output Voltage Range Single-Input-Multi-Output Hybrid DC-DC Converter Achieving 87.5% Peak Efficiency With a Fast Response Time and Low Cross Regulation for DVFS Applications

Zhiyuan Zhou¹; Nghia Tang¹; Bai Nguyen¹; Wookpyo Hong¹; Partha Pande¹; Deukhyoun Heo¹
¹Washington State University

A SIMO hybrid converter is presented, which obtains fast response, low cross-regulation, and high efficiency by using a multi-output hybrid power stage and a dual-switching-frequency technique. The hybrid power stage improves efficiency without sacrificing the output voltage range, and the dual-switching-frequency technique enhances the response and cross-regulation. The converter achieves 87.5% peak efficiency with output voltage range from 0.4V to 1.6V, it also achieves less than 0.01mA/mV
cross-regulation and less than 20mV overshoot during transient response.

10:20 AM

14-4

H-SIMO: A Hybrid Single-Inductor Multi-Output Thin-Oxide Power Management Unit Achieving 91.4% Efficiency from Li-ion Battery Voltages in 28nm FD-SOI

Sally Amin2; Sally Amin1; Patrick Mercier1
2Intel Corporation; 1University of California San Diego

This paper presents a miniaturized Li-ion-compatible hybrid single-inductor multi-output(H-SIMO) power management unit (PMU) in 28nm FD-SOI for powering IoT devices. Miniaturization is achieved by combining the benefits of SIMO converters with the benefits of hybrid-multi-level converters. The PMU is implemented in an arrangement that naturally exploits the required transistor stacking to enable coverage of the 2.8-4.2V Li-ion-battery-voltage using only 1V-thin-oxide transistors. The fabricated die independently regulates 3 outputs over 0.4-0.9V from 10uW-40mW using 1.28mm^3-inductor with 91.4% peak-efficiency.

10:45 AM Invited Paper

14-5

Sub-microAmp Energy Harvesting and Power Management Units for Self-Powered IoT SoCs: Analog vs. Digital Implementations (Invited)

Shuo Li1; Benton Calhoun1
1University of Virginia

This paper reviews the design trends and techniques for sub-microamp EH-PMUs. Analyzing the power trend of IoT components shows the load power is reducing from µW to pW level, which requires that EH-PMUs have sub-µA quiescent current to power those loads efficiently. ULP techniques are reviewed with three examples focusing on analog vs. digital implementations, an MIMO EH-PMU with analog vs. digital ZCDs, ALDO vs. DLDO, and an analog MPPT algorithm for piezoelectric energy harvesting.

Tuesday, March 24, 2020, 11:35 AM–01:30 PM

Lunch Break

Tuesday, March 24, 2020, 01:30 PM–05:35 PM

Session 16: Energy-Efficient Systems for Wearable, Implantable, and IoT Applications

Session Chair: Mahsa Shoaran, Cornell University
Session Co-Chair: Ulkuhan Guler, Worcester Polytechnic Institute

This session features emerging low-power systems for wearable/implantable and IoT technologies, with topics ranging from neural interfaces to low-power light sensors and machine learning hardware for biomedical applications.
Introduction: Energy-Efficient Systems for Wearable, Implantable, and IoT Applications

16-1
A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network with Online Training
Yijie Wei¹; Kofi Otseidu²; Qiankai Cao¹; Levi Hargrove³; Jie Gu¹
¹Northwestern University; ²Intel; ³Shirley Ryan AbilityLab

An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) on-chip learning of DNN engine allowing in-situ training of user-specific operations.

16-2
A 9.6 mW/Ch 10 MHz Wide-bandwidth Electrical Impedance Tomography IC with Accurate Phase Compensation for Breast Cancer Detection
Jaehyuk Lee¹; Surin Gweon¹; Kwonjoon Lee¹; Soyeon Um¹; Kyoung-rrog Lee¹; Kwantae Kim¹; Jihee Lee¹; Hoi-Jun Yoo¹
¹Korea Advanced Institute of Science and Technology (KAIST)

In this paper, we propose an 8-channel 10 MHz wide-bandwidth EIT AFE IC for compact and accurate breast cancer detection system. Thanks to the key features, the proposed prototype breast cancer detection system with the dedicated EIT IC can operate up to 10MHz with a small phase error of 4.32 degree, eventually can detect a small size target object of 0.5 cm and verified with the phantom experiments.

16-3
A 43.8µW per Channel Biopotential Readout System using Frequency Division Multiplexing with Cable Motion Artifact Suppression
Jinyong Kim¹; Hyunkyu Ouh¹; Matthew Johnston¹
¹Oregon State University

This paper presents a fully-integrated biopotential readout system using frequency division multiplexing (FDM) for general purpose, multi-channel bipotential signal acquisition. FDM reduces the number of required cables between active electrode and back-end readout, and frequency translation prior to transmission mitigates low-frequency motion artifacts and mains interference in the cable. A 4-channel
EMG/ECG architecture was fabricated in 180nm CMOS and consumes only 43.8uW per channel, and measured results include demonstrated EMG and ECG applications.

02:50 PM

16-4

A 151nW Second-Order Ternary Delta Modulator for ECG Slope Variation Measurement with Baseline Wandering Resilience

Xiaochen Tang¹; Wei Tang¹

¹New Mexico State University

This paper presents a second-order ternary delta modulator for ECG delineation. The proposed circuit measures the slope variation of the ECG signals to detect the turning points. Thus fiducial points of the PQRST waves can be located for on-chip arrhythmia classification. The chip achieves 3 ms timing error and shows robustness to baseline wandering. The circuit consumes 151 nW with 1 V supply at a sampling rate of 1 kS/s.

03:15 PM

Break

03:30 PM Invited Paper

16-5

Design and Optimization of Low Power and Low Light Sensors

Christian Enz¹; Assim Boukhayma¹; Antonino Caizzone¹; Raffaele Capoccia¹

¹EPFL ICLAB

This paper shows that many low-light applications share the same readout architecture. It explains how the readout circuit can be optimized for reaching a minimum input-referred noise without penalty on the power consumption. The design methodology is then illustrated by three applications, including a 0.5 electrons rms CMOS VGA imager, a 2.6uW PPG sensor and a 10uW 1D time-of-flight distance ranging device.

04:20 PM

16-6

A 12.5mg mm-Scale Inductively-Powered Light-Directivity-Enhanced Highly-Linear Bidirectional Optogenetic Neuro-Stimulator

Tayebeh Yousefi¹; Mansour Taghadosi¹; Alireza Dabbaghian¹; Ryan Siu¹; Gerd Grau¹; Georg Zoidl¹; Hossein Kassiri¹

¹York University

A mm-scale self-contained bidirectional optogenetic stimulator is presented. A novel LED driving circuit is employed allowing for fully-linear control of optical stimulation with the smallest reported 200mV headroom, significantly boosting the electrical-to-optical energy-conversion efficiency. The energy efficiency is further improved (30.46x) by custom-designed light-directivity-enhancing printed ulenses. In addition to the two stimulation channels, the SoC integrates two recording channels (Gain=48.3dB,IIRN=5.29uVRMS,SNDR=45.15dB) and is powered through an on-chip coil. Electrical,
optical, and in-vitro measurement results are reported.

04:45 PM

16-7

A 10.13μJ/classification 2-channel Deep Neural Network-based SoC for Emotion Detection of Autistic Children

Muhammad Awais Bin Altaf¹; Abdul Rehman Aslam¹; Hafiz Talha Iqbal¹; Mahnoor Aftab¹; Wala Saadeh¹

¹Lahore University of Management Sciences

An EEG-based noninvasive neuro-feedback SoC for emotion classification of Autistic children is presented. The AFE comprises two entirely shared EEG-channels using sampling capacitors to reduce the area by 30% and achieve an overall integrated input-referred noise of 0.55μVRMS with cross-talk of -79dB. The 4-layers Deep Neural Network (DNN) classifier is integrated on-sensor to classify (4 emotions) with >85% accuracy. The 16mm² SoC in 0.18um CMOS consumes 10.13μJ/classification for 2 channels.

05:10 PM

16-8

A 27Mbps, 0.08mm³ CMOS Transceiver with Simultaneous Near-field Power Transmission and Data Telemetry for Implantable Systems

Jordan Thimot¹; Kukjoo Kim¹; Chen Shi¹; Kenneth Shepard¹

¹Columbia University

This paper presents an inductively powered 27Mbps 0.08mm³ CMOS transceiver with integrated RF receiver coils for simultaneous two-way, near-field data telemetry and power transmission for implantable systems. A four-coil inductive link operates with a 27MHz carrier for power and 700MHz carrier for uplink (27Mbps) and downlink (6.6kbps). Complete transceiver functionality of the system has been achieved with overall power transfer efficiency (PTE) of 1.04% through 1mm of tissue phantom between reader and implant.

Tuesday, March 24, 2020, 01:30 PM–05:10 PM

Session 17: SoC Design: From Bits to Gigabits

Session Chair: Saad Bin Nasir, Qualcomm
Session Co-Chair: Nachiket Desai, Intel
Session Co-Chair: Xuanyao Fong, National University of Singapore

This session covers advances in SoCs spanning from full systems, to accelerators, to fundamental building blocks. The first paper addresses advances in digital control of integrated voltage regulators. The next two SoCs optimize performance across runtime conditions by monitoring temperature/power or communication channel conditions. The fourth paper highlights power management in a RISC-V microcontroller that performs periodical sensing. This is followed by a building block paper which shows a differential low-power flop design. The final two papers show accelerator blocks for genome sequencing and compressed sensing-based radar.
Introduction: SoC Design: From Bits to Gigabits

17-1
Randomized Pulse-Modulating Instruction-Issue Control Circuit for a Current and Temperature Limiting System in a 7nm Hexagon™ Compute DSP
Vijay Kiran Kalyanam¹; Eric Mahurin¹; Keith Bowman²; Jacob Abraham³
¹Qualcomm Technologies, Inc.; ²Qualcomm Technologies Inc.; ³University Texas at Austin

We describe a randomized pulse-modulation (RPM) circuit for controlling the instruction-issue rate in a Qualcomm® Hexagon™ compute multi-threaded compute DSP (CDSP) for adapting performance to limit current and temperature below target thresholds. Silicon measurements from a 7nm CDSP demonstrate that the RPM adjusts performance in ~5 CDSP clock cycles after synchronization and enables 0.4% performance resolution across a wide range of operation while avoiding thread-starvation and satisfy the 1 micro-sec latency requirement for the entire limiting system.

17-2
A 41.5 pJ/b, 2.4GHz Digital-Friendly Orthogonally Tunable Transceiver SoC with 3-decades of Energy-Performance Scalability
Baibhab Chatterjee¹; Shreyas Sen¹
¹Purdue University

In this paper, we present a digital-friendly Transceiver SoC consisting of an RF-DAC based transmitter with orthogonally tunable output power, data rate and ECC that enables optimum system level bit error rate (BER) and energy for over 3-orders of energy-performance scalability, along with an ultra-low-power OOK receiver that receives the transmitter’s control bits from a nearby base station for closed-loop control.

17-3
Digital Control of Switching and Linear Integrated Voltage Regulators
Harish Krishnamurthy¹; Zakir Ahmed¹; Xiaosen Liu¹; Nachiket Desai¹; Suhwan Kim¹; Nicolas Butzen¹; Sally Amin¹; Sheldon Weng¹; Krishnan Ravichandran¹; James Tschanz¹; Vivek De¹
¹Intel Labs

This work presents a summary of the digital control techniques in todays IVRs and the role digital control is playing to enhance their key performance metrics. Examples from high switching frequency Buck converters, computationally controlled digital LDOs as well as hybrid LDOs speaks not only to the growing popularity of digital control in a wide variety of applications but also demonstrates its suitability on advanced process nodes which is inherently tough on analog circuits.
03:15 PM

Break

03:30 PM

17-4

An Energy-Efficient RISC-V RV32IMAC Microcontroller for Periodical-Driven Sensing Applications

Ckristian Duran¹; Megan Wachs²; Luis Rueda¹; Albert Huntington²; Hector Gomez¹; Javier Ardila¹; Andres Amaya¹; Krste Asanovic³; Krste Asanovic²; Elkim Roa¹
¹OnChip - Universidad Industrial de Santander; ²SiFive Inc.; ³University of California at Berkeley

Reported work on minimum-energy (ME) computing for low-power applications has focused entirely on tracking solely the microprocessor ME voltage supply. However, the use of low-power systems requires accounting for regulator losses, voltage monitors, biasing, peripheral, clock sources, and start-up energies to adapt the correct ME supply to different operation modes. Here we demonstrate a 32-bit RISC-V IMAC based microcontroller in 180nm CMOS featuring a low-energy always-on (AON) subsystem extending on ME adaption by including peripherals.

03:55 PM

17-5

A Static Contention-Free Differential Flip-Flop in 28nm for Low-Voltage, Low-Power Applications

Gicheol Shin¹; Eunyoung Lee¹; Jongmin Lee¹; Yongmin Lee¹; Yoonmyung Lee¹
¹Sungkyunkwan University

A Static Contention-free Differential Flip-Flop (SCDFF) is presented in 28nm, targeting wide-range voltage scalability (1V to 0.3V). The SCDFF offers fully static and contention-free operation without redundant clock toggling with footed differential latches, while keeping same area with conventional transmission-gate flip-flop (TGFF). Measured power is reduced by 64%/56% with 0%/10% activity at 1V, compared to the TGFF, and 100 dies from 5 corners were functional down to 0.28V.

04:20 PM

17-6

A 2.46M reads/s Genome Sequencing Accelerator using a 625 Processing-Element Array

Zhehong Wang¹; Tianjun Zhang¹; Daichi Fujiki¹; Arun Subramaniyan¹; Xiao Wu¹; Makoto Yasuda²; Satoru Miyoshi³; Masaru Kawaminami²; Masaru Kawaminami²; Reetuparna Das¹; Satish Narayanasamy¹; David Blaauw¹
¹University of Michigan; ²Mie Fujitsu Semiconductor Limited; ³Fujitsu Electronics America, Inc.

We present an accelerator for seed-extension, a critical and computational intensive step in genome sequencing. The accelerator consists of a triangular array of 25x25 custom design processing elements implementing a string-independent automata. It achieves 2.46M read/s, a ~1800x performance improvement, and 27x smaller silicon footprint compared to a Xeon E5420.
A 17.8MS/s Neural-Network Compressed Sensing Radar Processor in 16nm FinFET CMOS

Peter Brown¹; Matthew O’Shaughnessy²; Christopher Rozell²; Justin Romberg²; Michael Flynn¹
¹University of Michigan; ²Georgia Institute of Technology

Transceiver bandwidth limits the resolution of ultra-low-power pulse radar systems. Compressed sensing techniques improve resolution but existing efforts require heavy computation. This work proposes a neural-network based compressed sensing radar processor architecture that improves resolution by 6x while remaining computationally efficient. Fabricated in 16nm FinFET CMOS, the processor simultaneously achieves more than 8x throughput and 18x efficiency over the state-of-the-art.

Session 18: Ultra-low Power Wireless Transceivers

Session Chair: Hossein Lavasani, Case Western Reserve University Industry
Session Co-Chair: Chris Rudell, University of Washington

The trend towards zero power radios for implantable systems and IoT continues to attract attention. This session will introduce several techniques for ultra-low power, short-range communication. An invited paper which opens this session presents a general overview of state-of-the-art low power communication receivers. The session continues with an ultra-wideband wirelessly powered implantable receiver which reports up to 150Mbps data rate and a 4.7pJ/b energy efficiency in TX mode and 1pJ/b while in the receive mode. The session will conclude with a paper which employs a high-Q MEMS filter to improve the sensitivity of an ultra-low power wakeup and data receiver to -108dbm.

Introduction: Ultra-low Power Wireless Transceivers

Efficient wireless connectivity is an important requirement for IoT applications and has attracted a lot of research interest recently. The receivers designed for such applications need to be low power while still supporting sufficient communication range and co-existing with other receivers that share the same frequency band. In addition, supporting adopted communication standards is key for ubiquitous integration with the existing infrastructure.
A 1.6mm³ Wirelessly Powered Reconfigurable FDD Radio with On-Chip Antennas Achieving 4.7 pJ/b TX and 1 pJ/b RX Energy Efficiencies for Medical Implants

Hamed Rahmani¹; Aydin Babakhani¹
¹University of California, Los Angeles

We present an integrated wirelessly powered radio with two on-chip antennas and a total volume of 1.6mm³. Power and DL data are carried to the system via an AKS-modulated RF link with an efficiency of 1pJ/p. The TX block, based on a power-oscillator, utilizes an on-chip dipole antenna at the load. Reconfigurable TX transmits UL data with OOK/UWB modulation schemes and archives a maximum data-rate of 150Mbps with an efficiency of 4.65pJ/b at 15cm distance.

A -108dBm Sensitivity, -28dB SIR, 130nW to 41µW, Digitally Reconfigurable Bit-Level Duty-Cycled Wakeup and Data Receiver

Anjana Dissanayake¹; Jesse Moody¹; Henry Bishop¹; Daniel Truesdell¹; Henry Muhlbauer¹; Ruochen Lu²; Anming Gao²; Songbin Gong²; Benton Calhoun¹; Steven Bowers¹
¹University of Virginia; ²University of Illinois Urbana-Champaign

A -108dBm, 430MHz highly digitally reconfigurable wake-up and data receiver in 65nmCMOS is presented. 2-tone OOK modulation and AlN-MEMS resonator enable an SIR of -28dB at 0.7% freq. offset from carrier. Configurable dynamic ranges of 11dB, 410X, 672X are achieved for sensitivity, power, and latency. In data Rx mode, 4.2kbps bit-rate at -108dBm sensitivity is achieved at 41uW. The WuRx is a highly digitally reconfigurable and interference robust candidate for emerging ultra-long-range IoT LPWAN.

Session 19: Forum: Journey of a Startup
Sponsored by SiFive
Gregory Chen, Intel Corporation

A Venture Capitalist’s View of the Journey of a Start-Up
Jennifer Ard, Intel Capital

Accelerating Artificial Intelligence with Light
Darius Bunandar, Chief Scientist, Lightmatter
Self Powered Wireless Sensors for the Industrial Internet of Things: From Academic Projects to Full Solution Products
Benton Calhoun, Co-Founder & Co-CTO, Everactive

Sifive: A Startup with a Mission to Democratize Access to Custom Cores and Silicon
Krste Asanovic, Co-Founder and Chief Architect, SiFive

Tuesday, March 24, 2020, 03:30 PM–05:40 PM
Session 20: High-Speed Wireline Transceivers

Session Chair: Tod Dickson, IBM T.J. Watson
Session Co-Chair: Kumar Lakshmikumar, Cisco Systems

This session highlights innovations in high-speed wireline transceivers for electrical interconnects, ranging from novel CDR and DFE techniques to architectures for state-of-the-art SerDes.

03:30 PM
Introduction: High-Speed Wireline Transceivers

03:35 PM Invited Paper
20-1 Short-Reach and Pin-Efficient Interfaces Using Correlated NRZ
Armin Tajalli¹; Armin Tajalli²; Amin Shokrollahi¹; Mani Bastai Parizi¹; Dario Albino Carnelli¹; Chen Cao¹; Kiarash Gharibdoust¹; Amit Gupta¹; Ahmed Hassanin¹; Klaas Hofstra¹; Brian Holden¹; Ali Hormati¹; John Keay¹; David Stauffer¹; Richard Simpson¹; Andrew Stewart¹; Giuseppe Surace¹; Omid Talebi Amiri¹; Anton Tschank¹; Roger Ulrich¹; Christoph Walter¹
¹Kandou Bus; ²University of Utah

Correlated Non-Return-to-Zero (CNRZ) signaling exhibits better pin-efficiency compared to the conventional binary differential NRZ signaling, while it does not compromise the sensitivity to Inter-Symbol Interference (ISI). This article analyzes performance of CNRZ transceivers, and provides experimental data for an Ultra-Short Reach (USR) link 20.83 Gb/s/wire, implemented in FinFET 16nm technology, and consuming 1.02 pJ/b.
20-2
A 60-Gb/s PAM4 Wireline Receiver with 2-Tap Direct Decision Feedback Equalization Employing Track-and-Regenerate Slicers in 28-nm CMOS
Kuan-Chang Chen¹; William Kuo¹; Azita Emami¹
¹California Institute of Technology

A track-and-regenerate CMOS slicer is proposed and employed in a PAM4 receiver. The reduced delay of the slicer and its full-swing outputs allow a 2-tap direct decision-feedback equalizer at 60-Gb/s with improved energy efficiency and area requirements. Fabricated in 28-nm CMOS technology, the PAM4 receiver achieved BER better than 1E-12 at 60-Gb/s with 1.1pJ/b energy efficiency measured over a channel of 8.2dB loss at Nyquist rate.

20-3
A 0.0285mm2 0.68pJ/bit Single-Loop Full-Rate Bang-Bang CDR without Reference and Separate Frequency Detector Achieving an 8.2(Gb/s)/µs Acquisition Speed of PAM-4 data in 28nm CMOS
Yong Chen¹; Xiaoteng Zhao¹; Pui-In Mak¹; Rui P. Martins¹
¹University of Macau

To our knowledge this work is the first bang-bang CDR for PAM-4 signaling without reference and separate FD, while being more energy (>3.3x) and area (>1.6x) efficiencies than the prior art that support only NRZ signaling. The frequency acquisition is fully automatic, and the achieved acquisition speed of 8.2(Gb/s)/µs is at least 8.1x faster than the prior art.

20-4
A 32Gb/s NRZ 37dB SerDes in 10nm CMOS to Support PCI Express Gen 5 Protocol
Mike Bichan¹; Clifford Ting¹; Bahram Zand¹; Jing Wang¹; Ruslana Shulyzki¹; James Guthrie¹; Katya Tyshchenko¹; Junhong Zhao¹; Alireza Parsafar²; Eric Liu¹; Aynaz Vatankhahghadim¹; Shaham Sharifian¹; Aleksey Tyshchenko¹; Michael De Vita²; Syed Rubab¹; Sitaraman Iyer²; Fulvio Spagna²; Noam Dolev³
¹Intel Toronto; ²Intel Santa Clara; ³Intel Chandler

The first SerDes design to demonstrate a PCI-Express 5 link with area of 0.33mm2 per lane, die edge usage per lane of 285 um, dynamic junction temperature range from -40C to 125C, energy efficiency of 11.4pJ/bit including PLL and clocking, power management including power gating for all analog blocks, continuous data rate support between 1-32 Gb/s, and supporting channel topologies with insertion loss up to 37dB at 16GHz with BER < 1e-12 in 10nm process.
Session 21: Forum: Advances in 5G and Wireless Systems

Sponsored by SiFive
Xuanyao (Kelvin) Fong

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker/Title</th>
</tr>
</thead>
</table>
| 4:00 PM-4:30 PM | **21-1** Antenna-Electronics Co-Design — Multi-Feed Antennas Based Mm-Wave Front-Ends for On-Antenna Power Combining, Active Load Modulation, and Polarization Division Duplexing
Taiyun Chi, Dept. of Electrical & Computer Engineering, Rice University |
| 4:00 PM-4:30 PM | **21-2** Full-Duplex Radio Transceivers
Sudip Shekhar, Dept. of Electrical & Computer Engineering, University of British Columbia, BC, Canada |
| 4:30 PM-5:00 PM | **21-3** Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning
Dr Hosein Nikopour, Intel Labs |
| 5:00 PM-5:30 PM | **21-4** TBD
Michael Thompson, Cadence Design Systems |
Wednesday, March 25

Session 23: Oversampled Data Converters

Session Chair: Vanessa Chen, Carnegie Mellon University
Session Co-Chair: Ayman Shabra, MediaTek

This session includes papers on oversampled low-pass and bandpass converters with discrete-time and continuous-time processing. Techniques such as time-interleaving and pipelining are utilized in SAR based designs. In addition, a method that shapes pipeline inter-stage gain errors is presented.

09:30 AM

Introduction: Oversampled Data Converters

09:35 AM Best Invited Paper Candidate

23-1
Continuous-Time Bandpass Delta-Sigma Modulators and Bitstream Processing
Michael Flynn¹; Rundao Lu¹; John Bell¹; Daniel Weyer²; Hyungil Chae³; Sunmin Jang⁴; Jaehun Jeong⁵
¹University of Michigan; ²Silicon Labs; ³Kookmin University; ⁴Apple; ⁵Broadcom

Continuous-Time Bandpass Delta-Sigma Modulators (CTBPDSMs) are effective for IF sampling and simplify receiver design. Bitstream processing (BSP) can be combined with an array of CTBPDSMs to enable highly area and power efficient digital beamforming. BSP directly processes the raw bit-stream outputs of the quantizers, enabling digital processing with simple MUXs. The combination of BSP and CTBPDSMs is also effective in a digital PLL. Emerging techniques show the promise of multi-band noise-shaping in a CTDSM.

10:25 AM Best Student Paper Candidate

23-2
A 20 MHz Bandwidth Continuous-Time Delta-Sigma ADC Achieving 82.1 dB SNDR and >100 dB SFDR Using a Time-Interleaved Virtual-Ground-Switched FIR Feedback DAC
Alok Baluni¹; Shanthi Pavan¹
¹Indian Institute of Technology, Madras

We present a single-bit continuous-time delta-sigma ADC that achieves 82.1dB peak SNDR and 101.2dB SFDR in a 65nm CMOS process. The key technique that enables low distortion is the use of a virtual-ground-switched resistive FIR feedback DAC, which operates in a 4x time-interleaved manner to reduce power dissipation. Interleaving artifacts, caused by mismatch, are addressed by mixed-signal calibration. The modulator and decimator consume 11.4mW and 15mW from 1.1V respectively. The Schreier FoM is 174.1dB.
23-3
A 80dB DR 6MHz Bandwidth Pipelined Noise-Shaping SAR ADC with 1-2 MASH Structure
Sein Oh¹; Younggyun Oh¹; Juyong LEE¹; Kihyun Lee¹; Seungjun LEE¹; Jintae Kim²; Hyungil Chae²
¹Kookmin university; ²Konkuk university

A pipelined NS-SAR ADC with 1-2 MASH structure is presented. Two-stage pipelined structure consisting of 5-bit NS-SAR and 4-bit NS-SAR ADCs shows 3rd-order noise-shaping. The measured DR is 80dB when the sampling rate is 83.3MS/s and bandwidth is 6MHz, and power consumption is 3.5mW showing FoM of 173.2dB. The proposed structure greatly relaxes design requirement of each SAR quantizer and helps to achieve high resolution as well as low power consumption and wide bandwidth.

23-4
A 77.1-dB 6.25-MHz-BW Pipeline SAR ADC with Enhanced Interstage Gain Error Shaping and Quantization Error Shaping
Chen-Kai Hsu¹; Xiyuan Tang¹; Wenda Zhao¹; Rui Xu¹; Abhishek Mukherjee¹; Timothy Andeen¹; Nan Sun¹
¹The University of Texas at Austin

This paper presents an enhanced interstage gain error shaping technique that adopts a digital error feedback technique to extend the interstage gain error tolerance by 5 times. This paper also proposes a passive quantization error shaping technique that reduces the ratio of a two-input-pair comparator by 2.7 times. A prototype equipped with the proposed techniques is implemented in 40nm CMOS achieving a SNDR of 77.1 dB over 6.25-MHz bandwidth and a 173.7 dB Schreier FoM.

23-5
A Fully-Dynamic Time-Interleaved Noise-Shaping SAR ADC Based on CIFF Architecture
Haoyu Zhuang¹; Jiaxin Liu¹; Nan Sun²
¹Tsinghua University; ²University of Texas at Austin

This paper presents a fully-dynamic, low-power, and wide-band time-interleaved noise-shaping SAR ADC based on the cascade of integrators with feed-forward (CIFF) architecture. Its loop filter and interleaving operation are realized by fully-passive switched capacitor circuits. Its feedforward summation is implemented by using a multi-path comparator. Moreover, its overall NTF is set by device ratios and highly robust against PVT variations. It allows the loop filter poles to be placed close to the unit circle.

Wednesday, March 25, 2020, 09:30 AM–12:05 PM

Session 24: GaN and High-Voltage Power Converters

Session Chair: John Pigott, NXP Semiconductors
Session Co-Chair: Saurav Bandyopadhyay, Texas Instruments

This session has 5 papers presenting GaN converters and high voltage full ICs. The first paper presents solutions to reliably drive GaN FETs through inductive parasitics in the gate loop. Next is a novel resonant dual inductor 48 W buck boost converter. Paper 3 is a MEMS actuator supply generating up to 117 V from integrated PV cells in an SOI process. Following is a dual rail AMOLED power supply with 1 mV ripple. Finishing the session is a 3 W 13x boost converter using a hybrid switching topology.

09:30 AM

Introduction: GaN and High-Voltage Power Converters

09:35 AM

24-1
A 91% efficient 30V hybrid boost-SC converter based backlight LED driver in 180nm CMOS

Nilanjan Pal¹; Adam Fish²; William McIntyre²; Nathanael Griesert²; Greg Winter²; Travis Eichhorn²; Robert Pilawa-Podgurski³; Pavan Hanumolu¹

¹University of Illinois at Urbana-Champaign; ²Texas Instruments Incorporated; ³University of California at Berkeley

This paper presents a 30V output hybrid boost converter-based LED driver for mobile displays using a synchronous inductive boost stage followed by a time-interleaved 1-2 series-parallel SC stages. This topology reduces switching losses by allowing the use of switches with low voltage-rating. Fabricated in a 180nm CMOS process, the prototype converter achieves 91.15% efficiency, which is 3% more than state-of-the-art.

10:00 AM

24-2
An 80-117V Pseudo-Adiabatic Drive Circuit for Microrobotic Actuators with Optical Power Delivery and Peak Power Reduction Factor over 14x

Yanqiao Li¹; Jason Stauth¹; Benjamin Dobbins¹

¹Dartmouth College

This work presents an efficient high-voltage drive circuit, a reconfigurable series-parallel switched-capacitor DC-DC converter, for mm-scale electrostatic and piezoelectric microrobotic transducers. The switched-capacitor converter boosts a nominal 5-7.4V input by ~16x to 80V-117V. By charging the output sequentially and recovering charge in discharge cycles, the converter reduces power consumption by over 14x compared to a conventional hard-switching driver. Measured results show effective operation with loads up to 20nF and operating frequency over 50kHz.

10:25 AM

24-3
A Power-Efficient Hybrid Single-Inductor Bipolar-Output DC-DC Converter with Floating Negative Output for AMOLED Displays

Fangyu Mao¹; Yan Lu¹; Edoardo Bonizzoni²; Filippo Boera²; Mo Huang¹; Franco Maloberti²; Rui
Martins1
1University of Macau; 2University of Pavia

This paper presents a hybrid SIBO DC-DC converter for AMOLED displays which are relatively more sensitive to their positive supply noises. This design significantly improves the display quality by achieving a near-zero ripple at the positive output thanks to the negative output floating and the low-power shunt regulators. With the hybrid topology and the proposed cross-coupled bootstrap-based level-shifter with a dual-PMOS inverter buffer, low-voltage devices without deep-N-well are used, reducing the chip area and cost.

<table>
<thead>
<tr>
<th>10:50 AM</th>
<th>Best Student Paper Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-4</td>
<td>A 9 - 45V Input 2MHz 3-Switch ZVS Step-up/down Hybrid Converter with 5x Volume Reduction</td>
</tr>
<tr>
<td>Chen Chen1; Jin Liu1; Hoi Lee1</td>
<td>1The University of Texas at Dallas</td>
</tr>
</tbody>
</table>

A new 3-switch ZVS step-up /down hybrid converter is proposed to use 1 auxiliary branch to establish ZVS and reduce the conduction loss in the step-down mode. The proposed converter is verified to achieve peak power efficiencies of 98% and 96% at 2MHz in step-down and –up modes, respectively, over an input range of 9V – 45V. The volume of external components in the converter is reduced by 5 times compared with the prior art.

<table>
<thead>
<tr>
<th>11:15 AM</th>
<th>Invited Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-5</td>
<td>Long, Short, Monolithic - The Gate Loop Challenge for GaN Drivers</td>
</tr>
<tr>
<td>Maik Kaufmann1; Achim Seidel1; Bernhard Wicht1</td>
<td>1Leibniz University Hannover</td>
</tr>
</tbody>
</table>

With fast-switching GaN any parasitic gate-loop inductance degrades the switching performance and may lead to false turn-on as well as gate-voltage overshoot. Two approaches to overcome these challenges in driving GaN transistors are discussed. In a discrete silicon-based driver, the gate-loop inductance is actively utilized for a resonant gate-drive approach. In a second implementation, the gate-loop inductance is reduced close to zero by GaN-on-Si monolithic integration of the power transistor and the driver on one die.

Wednesday, March 25, 2020, 09:30 AM–11:40 AM

Session 25: Analog in Advanced Technologies

Session Chair: Stefano Pietri, NXP Semiconductors
Session Co-Chair: Mark Oude Alink, University of Twente

The papers in this session describe design techniques for analog IC building blocks in 28nm or lower process nodes. They include two invited papers on ESD design challenges and papers on a voltage reference, a temperature sensor, and a low power PLL. The papers in this session describe design techniques for analog IC building blocks such as ESD cells, voltage references,
temperature sensors, and low power PLLs in 28nm or lower process nodes.

09:30 AM

Introduction: Analog in Advanced Technologies

09:35 AM Invited Paper

25-1

Technology Scaling of ESD Devices in State of the Art FinFET Technologies

Sukjin Kim¹; Radhakrishnan Sithanandum¹; Woojin Seo¹; Mijin Lee¹; Sangyoung Cho¹; Juho Park¹; Hyukhoon Kwon¹; Namho Kim¹; Chanhee Jeon¹

¹Samsung Foundry

Continuous optimization of power, performance and area lead to the evolution of planar CMOS to the FinFET technology. This paper presents challenges and solutions for robust ESD protection in FinFET technology. ESD devices of the general purpose I/O’s and fail-safe I/O’s are analyzed in 14nm, 10nm and 7nm FinFET technologies, and a new charge-based CDM analysis strategy which ensures first time silicon success is also explained.

10:00 AM Invited Paper

25-2

ESD Protection Design Overview in Advanced SOI and Bulk FinFET Technologies

You Li¹; Meng Miao¹; Robert Gauthier¹

¹Globalfoundries

The FinFET era brings new challenges to ESD protection. An overview of ESD design in advanced SOI and bulk FinFET technologies is presented. The design innovations and device optimizations are explored to achieve an effective ESD protection. The predictive ESD modeling and simulations are studied to optimize ESD protection and ensure first-time-right chip ESD design in FinFET technologies.

10:25 AM

25-3

A 6-Transistor Ultra-Low Power CMOS Voltage Reference with 0.02 %/V Line Sensitivity

Hayden Bialek¹; Matthew Johnston¹; Arun Natarajan¹

¹Oregon State University

This work presents a technique for the design of ultra-low power CMOS voltage references achieving low line sensitivity while maintaining state-of-the-art temperature insensitivity. The 6-T voltage reference occupies only 840μm² and consumes 28.6pA from a 0.5V supply. Measurements show an average line sensitivity of 0.02 %/V and an average temperature coefficient of 99.2 ppm/°C.
This paper presents an ultra-low power digitally-assisted analog ring phase-locked loop for microprocessors with a tunable switched capacitor loop filter. It achieves a power efficiency of 0.213mW/GHz and FoM of -234.4 dB with only 200ns lock time using a 100MHz reference clock. It supports a wide reference clock frequency range from 20MHz to 200MHz and can operate on a single 0.5-0.9V supply.

This paper presents a compact temperature sensor that directly controls a temperature-dependent self-refresh period of a mobile DRAM in 28nm CMOS. It uses a supply independent relaxation oscillator based on capacitive discharge through a diode connected MOS transistor. The sensor occupies 0.017mm2 and achieves an accuracy of ±0.9°C from -10 to 90°C after 1-point trim. It operates from 0.85 to 1.15V supply, it has a supply sensitivity of 0.27°C/V at room temperature and it consumes 33.75μW.
A dual-mode PRINCE encryption cipher is implemented, in 65nm technology, that is configurable between pipelined and fully unrolled modes. Correlation Power and EM analysis on test-chip measurements show minimal exploitability of leakage from intermediate registers in pipelined mode. The pipelined designs exhibit similar side channel resistance to unrolled designs while providing higher frequency and throughput. The overall system has a minimum MTD of 460K and a projected maximum throughput of 492 Mega encryptions per second.

10:00 AM

26-2

Design-Space Exploration of Quantum Approximate Optimization Algorithm under Noise

Mahabubul Alam¹; Abdullah Ash-Saki¹; Swaroop Ghosh¹

¹Pennsylvania State University

Quantum approximate optimization algorithm (QAOA) is a promising quantum-classical hybrid technique in near-term gate-based noisy quantum devices. In QAOA, the gate parameters of a parameterized quantum circuit are varied by a classical optimizer to generate a quantum state with significant support to the optimal solution. The existing analysis fails to consider non-idealities in the qubit quality. In this article, we study the impact of various noise sources on the performance of QAOA.

10:25 AM Invited Paper

26-3

Intel 22nm Low-Power FinFET (22FFL) Process Technology for 5G and Beyond

Hyung-Jin Lee¹; Steven Callender¹; Said Rami¹; Woorim Shin¹; Qiang Yu¹; Jose Mauricio Marulanda¹

¹Intel Corporation

The paper introduces Intel’s 2nd generation 22nm low-power FinFET technology (22FFL) developed for RF and mmWave applications. Intel’s 22FFL is the comprehensive FinFET technology offering the best-in-class RF transistors reaching above 300GHz and 450GHz of ft and fmax respectively. The addition of the high-power RF device (HyPowerFF) and elaborated mmWave BEOL support the opportunity to push silicon technology beyond 5G era.

11:15 AM

26-4

A 16K Current-Based 8T SRAM Compute-In-Memory Macro with Decoupled Read/Write and 1-5bit Column ADC

Chengshuo Yu¹; Chengshuo Yu²; Taegeun Yoo¹; Tony Tae-Hyoung Kim¹; Kevin Chai²; Bongjin Kim¹

¹Nanyang Technological University; ²Institute of Microelectronics (IME), A*STAR

A novel 8T SRAM bitcell is proposed for computing dot-products based on current-mode accumulation. The read and write disturb issue has been eliminated by adding two extra transistors into a standard 6T SRAM bitcell. Besides, ADC overhead issue has been addressed using a column ADC embedded in
each column-based neuron. The column ADC output resolution is reconfigurable from 1-to-5bit. A test-chip is fabricated using 65nm, and the energy-efficiency of bitwise operation is 490-to-15.8TOPS/W at 1-to-5bit.

Wednesday, March 25, 2020, 12:05 PM–02:00 PM
Lunch Break

Wednesday, March 25, 2020, 02:00 PM–02:15 PM
Closing and Awards Ceremony
General Information

Registration
Registration entitles the registrant entrance to all Sunday Educational Sessions and the Monday – Wednesday Technical Sessions, Monday Welcome Reception, Tuesday Conference Reception, and a link to the digital proceedings.

Questions on Your Registration
If you have questions on your registration please contact:
By email: j.teehan@ieee.org
By phone: 732-465-6496

Onsite Registration is required for virtual admittance to all sessions.

- Sunday, March 22: 7:30 am - 5:00 pm
- Monday, March 23: 8:00 am - 5:00 pm
- Tuesday, March 24: 8:00 am - 5:00 pm
- Wednesday, March 25: 8:00 am - 11:00 am

CICC Keynote Luncheon
Monday, March 23 12:10 pm-2:00 pm

Lawrence E Larson, Sorensen Family Dean of the School of Engineering, Brown University
Title: Microelectronics for Brain-Computer Interface Applications

Abstract: As integrated circuit technology becomes increasingly deployed to address the challenges of human health, the opportunity to interface directly to the brain is one of the most exciting and high impact opportunities. Challenges like epilepsy, paraplegia, quadriplegia, locked-in syndrome, MLS, Parkinsons, and many others, are being addressed by this new technology. The recent announcement of significant advances by Neuralink is one example of the potential. This talk will summarize some of the challenges and opportunities of brain-computer-interface (BCI) technology from an integrated circuit perspective.

Bio: Larry Larson received his B.S. from Cornell University and his Ph.D. from UCLA. From 1980 to 1996, he was with Hughes Research Laboratories, Malibu, CA, USA, where he directed the development of high-frequency microelectronics in GaAs, InP, Si/SiGe, and MEMS technologies. In 1996, he joined the faculty of the University of California at San Diego (UCSD), where he was the inaugural holder of the Communications Industry Chair. From 2001 to 2006, he was Director of the UCSD Center for Wireless Communications, and from 2007 to 2011, was Chair of the Department of Electrical and Computer Engineering. In 2011, he joined Brown University, Providence, RI, USA, where he is Sorensen Family Dean of the School of Engineering. He has authored or coauthored over 300 papers and has coauthored four books. He holds over 40 U.S. patents.

For Further Information Contact
John Teehan, CMP, IEEE MCE or Danielle Corrigan, IEEE MCE
Tel: 732-465-6496 Tel: 732-562-6047
Email: j.teehan@ieee.org Email: d.corrigan@ieee.org